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INTRODUCCIÓN 

 A diferencia de los más conocidos ejemplos experimentales de reacciones oscilantes, las 

reacciones de polimerización no poseen mecanismos redox. Es por tanto arduo pensar para ellas una 

retroacción no-lineal suficiente como para que un modelo de las mismas presente carácter 

oscilatorio. En este trabajo se desarrolla un ejemplo de tal modelo, con retroacción impulsada por 

especies dímeras. El ejemplo numérico elegido justifica el calificativo de “aureo” que recibe. 
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 ANÁLISIS 

 Las ecuaciones cinéticas son 



Revista Iberoamericana de Polímeros             Volumen 22(4), Marzo de 2021 
Katime y Pérez–Ortiz                       Oscilador polimérico Aúreo 
 

 148   Rev. Iberoam. Polim., 22(4), 147-151 (2021) 

2

2

p·X 2θ·X ω·X·Y A·X + F·D 2λ·D·X

p·X ω·X·Y 2p·Y

· · · ·X

dX

dt

dY

dt

dD
A X F D D

dt






= − − − − +




= − −



= − −


    (2) 

 Haciendo dD/dt = 0, se obtiene D = (A·X)/(X + m), con m =  /F, y sustituyendo resulta 

   

2
2

2

A·X
p·X 2θ·X ω·X·Y

p·X ω·X·Y 2p·Y

dX

dt X m

dY

dt




= − − − − +

 = − −


   (3) 

 A fin de introducir un parámetro , y al mismo tiempo como simplificación numérica (en 

unidades arbitrarias adecuadas), se hicieron las designaciones: 

 
α 1 1 B

y =μ·Y; a = ; p = ; 2θ = ; = 1; A = ; m = 1; 2p = μ
μ μ μ μ

   (4) 

con lo cual se tiene 
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 La finalidad de  es doble: por una parte asegura la inestabilidad del estado estacionario de 

(5) para 0, → si ( / ) 0.x    Por otra parte permite incluir el comportamiento de las 

trayectorias de fase de (5): para 0, → hay saltos rápidos de x a y cte, excepto en un extremo de 

( , ) 0.x y =  

 Seguidamente se supuso que el estado estacionario de (5) se daba para X = X0 = 1, lo cual 

implica 
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 La resolución de la segunda ecuación da 
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el llamado “número aúreo”, lo cual justifica la denominación del modelo. Entonces por supuesto 

     5 3 2B a= + −  

 La matriz secular (jacobiana) de (5) se expresa, en el estado estacionario (SS, subíndice 0): 
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cuya traza vale 
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y cuyo determinante vale 
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siempre para todo a ≥ 0. 

 Consecuentemente, el SS (x0 = 1, 0 ( 5 1) / 2y = −  es inestable si (Tr)0 > 0.  Para 0 →  

ello está asegurado si 

     
5 1

0,2060113
6
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bastaría entonces que fuere 

     
5 1 6

4( 5 2)
crit

a
 

− −
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−
    (11) 

 Cuando  disminuye y pasa por el valor crit, el SS pasa de ser foco estable a ser centro y 

luego foco inestable. Ocurre bifurcación de Hepf, con surgimiento de un ciclo límite (CL) que rodea 

al SS inestable. 

 La nuliclina dx/dt = 0 es 

     
B·x a

y = 1 x +
 (X + 1)  x 

− −     (12) 
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 Para x = 0, y ; para x , y .→  →  → −  Su pendiente es 

     
2 2

B a
y´ = 1

(x + 1) x
− −     (13) 

 Para x = 0, y´ ; para x , y 1.→ − → → −  

 En el SS, ´

0

5 1 6
Y = 1 a =

4 4

B a− −
− − , por lo que si se cumple (10) será ´

0 0,y   y 

entonces en virtud del teorema de Bolzano la característica δ(x,y) = 0  es sigmoide: posee un 

mínimo en x < x0 = 1, y un máximo en x  > x0 = 1. 

 
 Figura 1. Plano de fases de (5). 

 

 La Figura 1 muestra el plano de fases de (5) en estas circunstancias ((12) sigmoide, SS 

inestable). Se puede construir la frontera   de un recinto cerrado en torno al SS: Se parte de Q, 

intersección de (12) con y = 0, que existe ya que para x = 0 es y ,→  y para x →  es y .→ −  

 En la vertical QU hasta centrar a y 0
•

=  (existe U, ya que y 0
•

=  tiene asíntota horizontal en 

y = 1) el vector normal a  , saliente, es n(1,0),X 0
•

  y el flujo del campo de dirección de (5) vale 

pe = n · (x , ) 0 ( en Q).y x
• •

=  =   En la horizontal UV, hasta cortar de nuevo a 0,x
•

= es n(0,1),  

y 0,
•

  pe = y 0
•

  (= en U).  En la vertical VW, hasta el eje y = 0, es 
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n( 1,0), 0, p x 0 (= en V).ex
• •

−  = −   Por último, en el eje y = 0, WQ, n(0, 1), y 0, p y 0.e

• •

−  =−   

Así, en virtud del teorema de Poincaré–Bendixson, existe al menos un ciclo límite de (5) en el 

recinto encerrado por .  Para , →   la forma extrema del CL se esboza en la Figura 1. 
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