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INTRODUCCION

En un articulo previo se intentd obtener mecanismos de polimerizacion, de tal modo
modificados, que presenten oscilaciones de ciclo limites (CL) [1-6]; se usaban dos variable [7—10]
con el fin de probar la existencia de dicho CL empleando el teorema de Poincaré—Bendixson (PB)
[11-20].

Este trabajo propone una ampliacion del contenido del anterior, extendiéndose a otra nueva
gama de osciladores. Las hipdtesis mecanisticas basicas se resumen en la seccion Il. La Seccion 11
repasa la teoria general que se usard y la aplica a las hipdtesis planteadas. Una casuistica de los
modelos se discute en la Seccion IV, y la Seccion V analiza en concreto los mecanismos
seleccionados.

Il. Hipotesis basicas. La polimerizacion se propaga “paso a paso” por adicion del
monomero X (cuya concentracion es una de las variables que oscilan) a las cadenas activas R;

R, + X —5 R,

1)
la curva de concentraciones Y = Z R, es la otra variable que oscila.
La especie R, es produccion en la iniciacion:
—o R, 2)

etapa que contribuye con V(X) a F'h (" = d/dt),y con —&'V(x) a X. El parametro € puede valer 0 6
1. Diferentes funciones V(X) se postularan mas adelante.
La terminacién ocurre por transferencia al monémero [21]:
{Rl + X —f 52X

Kq H
Ri+X——> P +X (jxl)

©)
Las especies R; son eliminadas por
R, — 38X
‘ (4)
RJ. —>
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& puede valer 0 (en la mayoria de los casos estudiados) o bien 1 (entonces 4 puede interpretarse

como una terminacion alternativa, por ejemplo por transferencia a disolvente.

Ademés X estd involucrado en otros procesos [2], que contribuyen a X con H(X).
Diferentes funciones H(X), las méas sencillas posibles, se postulardn mas adelante.

I11. Teoria general. Para unas ecuaciones cinéticas de la forma [3]

X = S(X,Y)
. (5)
Y = N(X,Y)
los estados estacionarios (Xo, Yo) (SS = steady state) se hallan de
X =0
_ (6)
Y =0
Segun el primer teorema de Lyapunov [22-25], dada la matriz
_ ( oS j _ ( oS j
c=|— y=|—
oX J, oY ), @)
( oN j ( oN j
a=|— b=|—
oX ), oY ),
cuyatraza es
T=b+c (8)
cuyo determinante es
D =bc-ay 9
y cuyo discriminante es
A= T2 _4D (10)

SiD>0¢el SSesnodo (A >0)o foco (A <0); entonces si T >0, el SS es inestable.
Segun el teorema Poincaré-Bendixson [11-17], si se puede tener una region del plano de

fases {X,Y}, encerrado por una frontera cerrada tal que
pzﬁ-(f(,\.(jgo (11)

a lo largo de toda ella [13,18]. Donde n es normal a la frontera, en sentido saliente del recinto que
encierra), y en dicha region solo hay un SS del tipo nudo o foco, y ese SS es inestable, dentro de tal

region y rodeando al SS, existe al menos un CL de (5).
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En los mecanismos que se estudiaran, y de acuerdo con las hipétesis enunciadas, las
ecuaciones cinéticas seran de la forma [26]
X = - &V -kR:X - kR, X —.. k; R X + 5FR, + HX)
Ri = V—k,R,-X —k, R X — F-R, =V —k,R;X — F-R, 12)
Rz = k,R,;-X —k,-R;-X — kyR,X — F-R, =V —k,-R,-X — F-R,

con ks = k2 + ks. Se afiade la hipdtesis R1 = 0 siempre, con lo cual (tras sumar las R;jy denotar

Y = ) R)),resulta

VX *F) |y = sx,v)

X = — &V -k, XY +
K, X +F (13)

Y =Vok; XY — F-Y = N(X,Y)
la existencia del estado estacionario (SS) exige el cumplimiento de

V, (ks X, + 8F)
k, X, +F

Hy = &V + Lk, XY +

14
v (14)
© kX, +F
Los elementos de la matriz (7) se expresan [27]
, K, Xo+F)| Vyky+ (Ky- Xy +8F)V, | =V, (ks X, +8F)k ,
C=—8-V0—k2-Y0+(4 0 )[0 3 (3 0 )Zo] 0(3 0 ) 4+Ho
(ky-Xo+F)
g=-k,; X, (15)
a=V, -k;Y, b=-ksX,-F
La condicion T > 0 exige
RV SV (KXo +F) [ Ky Vg +V, (K X +8-F) |-V, (Ky:X o +5-F)K, XA F
kSIXO + F (k4.XO + F)2 (16)
por supuesto, al ser b < 0, es necesario que ¢ > 0. La condicion D > 0 se plantea:
, , k,V,+F)(k.V,+V, (k.X,+5F)k ,
—(k,V, +F)| Hy — &V, - KoV +( Vo) (ksVo +Vo (KXo +SF )k, ) +k2x0(v0——k3v0 ) >0(17)
k,V,+F (k, X, + F)? kX, +F

Por supuesto, al ser g <0, b <0, para que cuando T > 0 sea D > 0 se requiere como condicion

necesaria que a > 0.
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A continuacion se examinaran algunas posibilidades, en busca del cumplimiento de las
ecuaciones (14), (16) y (17).

IVV. Seleccionando osciladores. Para comenzar, se observa que una iniciacion de orden cero,

conV =A, V, =0, conducia a valores de a < 0 que violaban la condicién necesaria antes mencionada;

se excluyen, pues, estas iniciaciones.

La mayoria de los casos estudiados, lo han sido para & = 0,con lo que las etapas (4) serian

simplemente un flujo selectivo que elimina las especies R;j. Para las velocidades de iniciacion se
supusieron funciones de la forma [28]

V = kl'Xn (18)

conn =106 2vyaque n =0 esta excluida.

Se hizo un primer estudio de posibilidades para el conjunto concreto de parametros (en
unidades apropiadas): k=1, ks=1,ka=2,F=2,y Xo=1 (19), para el cual, segin (14), con 6 =0,y
con (18):

K
3

floe

k
H,=¢k, +-—=2>0 20
o=k, 20)

y segln (14)

k, (2n+1)k,

c:—nklg—?+ +nyg=-1 a=k1(n—%j; b=-3 (21)

En aquellas variantes en que se encontraron posibilidades de osciladores, éstas eran aceptadas
para un posterior desarrollo en la Seccion V. Alli donde se apreciaran imposibilidades, se intento
generalizarlas para conjuntos de parametros distintos de (14).

Por ejemplo esta primera aproximacion a la seleccién de modelos:

Caso € = 1. Entonces, por (20), Ho = (k1-13)/12 > 0, lo que excluiria H = 0. La variante H =
A implica, por (20), Ho = A = 13k1/12, siendo H, = 0, por (21) se ve que la condicion necesaria ¢ >
0 se expresa n < 19/18. El valor n = 1 puede cumplir esto, y el modelo correspondiente se detallara
en la Seccion V; no vale, sin embargo, n = 2.

Mas posibilidades parecieron ofrecer los casos ¢ = 0.

Caso ¢ = 0. Aqui, por (20), Ho = ki/12 > 0 y con los datos (19) la variante H = 0 no es
posible. La variante H = A implica, por (20) Ho = A = ku/12, siendo H, = 0, por (21) se ve que la

condicion necesaria ¢ > 0 se expresa n > 5/6; el valor n = 1 la satisface, y el modelo correspondiente se
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detallara en la Seccion V; el valor n = 2 también vale, y el modelo correspondiente se detallard en la Seccién
V (para éste ultimo, se ve que también es imposible con F = 0).

Seguidamente se trata de generalizar [2] los resultados sobre imposibilidades encontradas en el

parrafo anterior. Para ello, se reescribe la ecuacion (13) correspondiente a X, teniendo en cuenta (18),

como
X = HX) - X(k,Y — ) 1)
con (22)
f(X) = kz.xnl[_g . kx_fSF]
k,X + F (22)
Asimismo, se tendra
Hy= X, (kYo = fo) (23)
y
. H ,
c= H0 - X—O + XOfO (24)

0

Para € =1, n = 2, resulta que

f':—kl k,X +F B Fk,X | <
k,X +F (k,X + F)

ya que (kaX + F) > F > (FkaX)/(kaX + F). Con un foco f, < 0,al ser ¢ > 0 necesita, por (24), que sea

H, > H,/X,. Esto no se cumple ni con H = 0, ni con H = A o H = AX, confirmando las exclusiones

arriba obtenidas para los dados (14).

Parag=1,n=1, resultaya

Fk Kk,
v e
(kX + F)
Por (23), es
kX,
HO = k2X0Y0 +k1X0(1 - W) >0

luego no sirve la variante H = 0, como se vi6 arriba para los datos (19). Con H = A, H'0 =0, la
condicion ¢ > 0 en (24) sera X,-f, > H,/X,, lo que rinde

F-ky- X, K; X, k, X,
— + >1+ —0—
(k- X, + F) k, X, + F kX, + F
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El cumplimiento de esta desigualdad exige el de
Fk, X, N k,X, N
(kKXo + F)* (KX, +F)

Denotando

p=kika y o= (25)

(k;X,)
se reformula como p(1+p + @)+ p-¢ > (1+p +9)°, esto es, ¢ +2¢ + (1+ p) <0. Pero esto es
imposible ya que todos los coeficientes del término son positivos; luego si € =1, n =2, la variante H
= A queda excluida en general.
Sin embargo, se descubrié que no podian generalizarse las exclusiones de H = 0 para los casos

€ =0. Parae =0, lavariante H = 0 requiere

k2 — k3
kX, +F kX, +F

(26)

lo cual no se cumple con (19), pero si puede ser cierto con otros datos. Usando las notaciones (25) y
(26) resulta

_n2

_1l+p-p @7
p-1
Para p < 1 es imposible lograr ¢ > 0, pero si se puede si 1< p < (1 + \/E)IZ .
Sin=1, los elementos de (7) en la variante H = 0 son
k,K,FX, F-k

=13 7% =-k, X, a=—-1— b=-(KkX,+F 28
(k4X0 + F)2 g 2 Mo (k3X0+ F) ( 37M0 ) ( )

Luego puede tenerse T > 0 si ki > [ka-Xo + F)-(ka-Xo + F)]?/(Fk3-Xo) y para D > 0 se precisa
ka/(ksXo + F)?> ka/(kaXo + F)?, lo cual, teniendo en cuenta (26), conduce a (ka-Xo + F) > (ka-Xo +
F), que es verdadero siempre. Con los datos (unidades apropiadas)

ka=1, ks = V2, F=1, Xo=1, (p=v2, ¢=1) (29)
se desarrolla un modelo en la Seccion V.

Sin =2, los elementos de (7) en la variante H = 0 son

. 0 2 .
- kXX 2F) oo g, s KX I o, ) (a0)
(k4'XO + F) ks'xo +F

Puede tomarse T > 0 si
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s (k- Xo+ F)?* (ks X + F)

“ kyXg:(k X, + 2F))

y para D > 0 se precisa, teniendo en cuenta (26)

kX, + 2F S k,X, + 2F
ky-X, +F k,X, + F

F F
1+ > +1
kX, +F kX, +F

lo cual es siempre cierto. Un modelo, basado en los datos (29), se desarollé en la Seccion V.
Por ultimo, se investigd el campo & = 1 (terminaciones competitivas, utilizando los

parametros (19). Con § =1 segun (14)

5
H, =k |e—-— 31
0 1(8 12) (31)
y segun (15)
c:—g-n-kl—%+W+Hg) g=-1, azkl(n—%); b=-3 (32)

Para los casos € = 1, por (31), Ho = 7ki/12 > 0 lo que excluye la variante H = 0. En la

variante H = A, con H'O, la condicion necesaria ¢ > 0 es, por (32), (-11 — 6n)/24 >0, imposible si n
> 0. La variante H = A se excluye. Si la variante H = A-X, Ho = A, H'0 = A = (7Tki/12) y la

condicion (c > 0, por (32), (— 6n + 3)/24 >0 y la condicion ¢ >0 por (32), (-6n + 3)/23>0sin <
1/2, la cual tampoco se da, dicha variante H = A-X es imposible.

Casos € =0. Por (31) Ho = -5ki/12 < 0, esto excluye automéaticamente funciones como H =
0,H=A,H=A-X ... Se prob6 entonces la degradacion de primer orden H = — ksX, con Ho = — ks

= 5ki/12 > Hs =5k1/12, y H, = -k, = —5k,/12. Con ello, por (32), resultan ¢ = (18n —

21)/24-k1, g = -1, a = ka(n — (1/3)), b = — 3. La condicion necesaria c > 0 e quivale a n = 21/18; n =
1 no la satisface, pero si n = 2. No obstante, esta opcion, con ¢ = 5k1/8, g = -1, a = (5/3)k1, b =- 3,
da D =-5Y4/24 <0. Se probé seguidamente la degradacion de segundo orden, H = — ks-X2, con

Ho = —ks = 5ki/12 = ks = 5ki/12,y H, =2k = =8k /6. oo el por (32) resulta C = [k1.(18n

—31]/24,9g =-1, a=ki(n — 1/3), b = — 3. La condicién necesaria ¢ > 0 equivale an 31/18;n=1no
la satisface, pero si n = 2. En esta opcién, se tienen ¢ = 5ki/24, g = — 1, a = 5k1/3, b = -3, originando T =
5k1/24 -3 > 0 si k1 > 72/5'y D = 25k1/24 > 0. Este modelo se desarroll6 en la Seccién V. No se hizo

aqui ningdn intento de generalizar las imposibilidades obtenidas.
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V. Mecanismos de reaccion. Esta seccion plantea ya esquemas cinéticos de reacciones, cuyos

analisis [21] se ajustan a los modelos de osciladores seleccionados en la seccidn anterior. Puede
disefiarse un simbolismo [2] {8, 8,n,H} para denotar los diferentes modelos.
M1 (0, 1, 1, AX). Sean las reacciones
X %5 R,
R, +X %>R,

R, + X — 5 R,

R, + X —— 2X
R, +X 5P, +X (33)

Regidas por las ecuaciones [21,29]
X =~k X —K, X-R, — k- X-R, ... kyX-R, + AX

Ri = k;-X — k- X-R, — k;X-R, - F-R,

(34)
Rz = k,-R;-X = k,R,-X — k;X-R, — F-R,
Suponiendo él = 0, sumandolas R ; y denotando ZR, =Y, resultan
. e X2
X = _kl.X — kz.X.Y + k3k—1x + A-X
k, X +F (35)

Y = kX - kXY - FY

En el caso concreto (unidades apropiadas) k2 =1, ks = 1, F = 2, ki = 25, A = 325/12, se tienen
Xo =1, Yo =25/3, la matriz es

25

-1
8
N 3
3

conT=1/3>c,D=175/24 >0, A =0, el SS es foco inestable.

Para construir la frontera abcdefa [2] de un recinto Poincaré—Bendixson [9, 13, 18], se parte de
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a (1,0) (Figura 1). La curva [ab[ es Y = 2:InX, en ella n(2x,1), y el flujo (11) vale
p = (25/6) + (25X/(X + 1)) — 25X + XY
pero en [ab[ es Y < [(25/12) + 25X/2(X + 1)] (curvaX = 0), luego se cumple

25 25X? 25X

- +
6 20X+1) 12

Dado que en [ab[ es ademds X > 1 (= en a), la cantidad (5X? - 3X + 2) < 0, luego y <0 en [abl.

|
Y | . o
d + e
| -
| .
| e
| P -
} 7 ,_/_/—/——"“_ 4_('1, k=0
P -
SS,.‘ P .
/7 |
| 7
e [ ‘
. /
//" g |
\
A }
, |& a)
1
f X

Figura 1. Plano de fases de (35).
Tras cortar en b a X =0, se sigue en la vertical [bc[ hasta Y =0. En [b,c[,

N(1,0), X <0 (=enb), luegop = X <0 (=enb).

El tramo [c,d[ llega hasta la vertical X = 1. En [c,d[, n =(0,1), Y <0 (=enc), y p

Y <0 (= enc).

La curva [de[, hasta llegar de nuevo a X = 0,es del tipo Y = 2:In X + C, con n(-2/X, 1),

donde

25 25X
p=—— +
6 X +1

- XY

Pero en [de[ es Y > (25/12) + 25X?/2(X + 1) (curva X =0), luego

25 25X 25X
p<—-— + -
6 2(Xx+1) 12
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ahora bien, — (25/6) + 25X?%/2(X +1) — 25X/12 < 0 en [de[; esta Ultima desigualdad equivale a
5X2 -3X +2 < 0, lo cual es cierto en [de[, para X < 1. Luego en [de[, p < 0. Por la vertical [ef [ se

llega al eje X; en ella n(—1,0), X >0 (=ene),yp= ~X<0 (= en e). Cierra el recinto el tramo [fa[

del eje X, donde ﬁ(O,—l,),\.( > 0, luego p = —Y < 0. en virtud del teorema de Poincaré-Bendixson,

existe, dentro de este recorrido, al menos un CL de (35), en torno al SS inestable.
M2 (0,0, 1, A). Sean las reacciones,

B+X >R, +X

R, +X >R,

R, + X —5 R,

R, + X —&— 2X
R, +X 5P +X (36)

R, —

R, —/—

A > X

regidas por las ecuaciones [21,29]

X = —ky Ry X —KyX-R, o + Ky X-R, + A

Ri = k-B-X — k,X-R, — k;X-R, - F-R, -
R = k,-R;-X — k,-R,-X — kyX-R, — F-R,

Suponiendo I521 =0, sumando las I.?,- y denotando ZRJ =Y-(k, =k, + k;) resultan

2
ke B-X* o

).( = _kZ.X.Y + .
kK, X +F (38)

Y =BX - kXY - F-Y
en el caso concreto (unidades apropiadas) kz =1, ks=1,F=2,B=ki =84, A=7, setienen Xo=1, Yo

= 28: la matriz es
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-1

N~

56 -3
conT=(1/2)>0,D=91/2>0, <0:el SS es foco inestable.
Para construir la frontera abcdea [2,9,15,18] de un recinto Poincaré—Bendixson, se parte de
a(1,0) (véase la Figura 2). La curva [ab[ es Y = 2-In X, en ella n(2/X,-1,) y el flujo (11) vale

2
p=(14j_ Xt oy
X (X + 1)

pero en [ab[ es

Y<1+ﬂ (curva).(:O)
X X+1
luego
14 42X?
p <7+ -
X (X+1)

porseren[ab[ X>1 (=ena),

2 2
is 14, —>£+7s21 —>£+7—42X < 21- 42X
X X X X+1 X+1

Ahora bien, en [ab[, 21 —[(42X?)/(X + 1)] <0,yaque 2X?— X -1 > 0, para X = 1; luego
2 2
14 a2t 42X

p<7+ < <0
X X+1 X+1
luego p < 0 en [abl.
Y
V=0
d c/
[ ]
;{0
SS
|
\
|
\
\
|
. .a
(& 1 X

Figura 2. Plano de fases de (38).
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Tras entrar en b a X = 0, se sigue en la vertical [bc] hastaY = 0. En [be, n(1,0), X <0 (=enb),
luego p = X <0 (= en b). El tramo [cd[ llega hasta X = 0; en él, n(0,1), Y<0 (=enc),y
p= Y <0 (= en c). Se vuelve al eje X por la vertical [de[, en ella n(—1,0), X >0 (=end),yp=-

).( <0 (= en d). Cierra el recinto el tramo [ea[ (del eje X, donde n(0,-1), Y > 0,luego p = —\'(> 0.
En virtud del teorema de Poincaré—Bendixson, existe, dentro de ese recinto, al menos un CL de (38),
en torno al SS inestable.

M3 (0, 0, 2, A). Sean las reacciones
2X —5 7 + X
B+Z——> R, +X
R, +X —%3 R,

R, + X —2 5 R,

R, + X —% 2X (39)

R, +X 5P, +X

R, ——
R, ——
A > X

regidas por las ecuaciones [21,29]

X =~k X2+B-Z + KR X — KRy Xt KyRyX + A

Z=kX!-BZ
: (40)
Ri= B-Z -k R:X - kR:X - F-R,
R» = kyRyX - kyR,- X — k,R,"X - F-R,
resultan
. X3
X:_kZ.X.Y +k3k—1X+A
k, X +F (41)

Y = kX, — kXY — F-Y
En el caso concreto (con las unidades apropiadas) A =1, ki =12, ka=1, ks =1, F = 2, se tiene

Xo=1, Yo=4; lamatriz es
36 Rev. Iberoam. Polim., 22(1), 25-49 (2021)
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3,5 -1
20 -3
conT=05>0,D=95>0, A <0: el SS es foco inestable.

Para construir un recinto Poincaré—Bendixson (véase la Figura 3), se parte del punto a(1,0)

[9,13,18]. La curva [ab[ llega hasta X = 0,yesY =2:InX;enella, n(2/X,-1), y el flujo (11) vale

3
X (X+2)
En [ab[, Y < (1/X) + (6X?)/(X+1) (CurvaX =0), luego
2 6X° 6X°
p<—+1- <3 -
X (X+1) (X +1)

comoenfab[esX > 1, (2/X)+1< 3,

0 < i+1— 6X?3 <3 6X?3
X X +1 X +1

Dado que lacurvau=2X3-X -1 20paraX = 1 (paraX =1 (paraX =1,u=0, para X = 1,
u'=6X%-1>0),secumple (3—6X3/(X+1) =< 0es[ab[, luegop <0 en [abl.

Se sigue por la vertical [bc[ hasta Y = 0; en [bc[ es n(1,0), vy X <0 (= en b), luego
p = X < 0 (= en b). Desde c se va en horizontal hasta cortar de nuevo aX = 0 en d; es [cd[,
n(0,1), Y < 0 (=enc).yp= —\.( <0 (= en d). Cierra el recinto el tramo [ea[ del eje X desde

n(0,-1), Y >0, p=—Y <0.
En virtud del teorema de Poincaré—Bendixson, existe, dentro del recinto cuya frontera es

abcdea, al menos con CL de (41) en torno al SS inestable.
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=

S

a

Le=~

S
o
|
|
|
|
|
1

X
Figura 3. Plano de Fases de (41).

El siguiente modelo es simplemente una variante de este para F = 0.

M4 (0, 0, 2, A; F =0). Sean las reacciones

2X — 57+ X
B+Z—— R, +X
R, +X %>R,

R, + X —2 R,

(42)
R, + X — 2X
R, +X 5P, +X
A —> X
regidas por las ecuaciones [21]
X =~k X24+B-Z — kyRyX = KyR, Xowt KyRyX +A
Z=kX*~BZ
(43)

Ri = B-Z - k,yRX - kR, -X

Rz = k,-R,-X — k,-R,-X — kR, X

Suponiendo Z =0, Félz 0, sumando las F'Q,-y demostrando (Y = ZRL (k, = k, + k),
resultan
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Kyk, X2 A
4 (44)

X =k, XY +

Y = kX, — kXY

En el caso concreto ki =3, A =0,2, k2 = 1, ks = 1,5 (se parte, desde luego de los datos (19)), el
SSes Xo=1, Yo =2, lamatriz es
16 -2
5 2

conT=0,1>0,D=3,8>0, A <0:elSS es foro inestable.
Para construir la Figura 4 [2] la frontera abcdea es un recinto Poincaré—Bendixson [9,13,18], se
parte del punto a. La linea [a,b[ es simplemente una recta Y = (3/2)(X — 1), con [ab[, p = 3/10(1 —X?)

< 0 al ser X = 1 (= en a). Se prosigue por la vertical [bc[ hasta llegar a Y =0; en [bc],
n(1,0), X < O(=enb),p= X < 0 (=enb). Por la horizontal [cd[ se va hasta X = 0; en [cd,
ﬁ(o,l),\'( <0,p= Y <0(=enc). Se desciende por [de] hasta el eje X; en [de,

n(-1,0), X >0 (=end),p= Y <0 (=end). Cierra el recinto el tramo [ea] del eje X, donde

n0,~1),Y >0, p=—-Y <0.

En virtud del teorema de Poincaré—Bendixson, existe, dentro del recinto delimitado por abcdea,
al menos un CL de (44), en torno al SS inestable.

SS
o
I
|
|
|
|

a

me

1 X
Figura 4. Plano de fases de (44)
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M5(0, 0, 1, 0). Sean las reacciones
B+X —» R, +X
R, +X %>R,

R, +X 3R,

R, + X — 2X

(45)
R, +X 5P, +X

R, ——

R, —/—

regidas por las ecuaciones [21,29]

X = —Kky Ry X —K, X-R, ... + kg X-R,
R: = B-X — k,X-R, — k;X-R, — F-R, (46)
R = k,-R;-X — k,R, X — k,X-R, — FR,

Suponiendo R; = 0, sumando las F'ij denotando Y = ZR, (ka = k2 + k3), resulta

Ky B-X?

X =k, XY +
k, X +F (47)

Y =B-X - kXY - F-Y

que es el caso concreto (29): k2 = 1, ks = V2 ,F=1, ki =B =20, presenta SS en el origen y en Xo,
Yo = 8,284 da una matriz
[3, 482 -1 J
8,284 -2,414
con T=0,063>0,D =2,292>0y A <0: ese SS es foco inestable.

Para construir la frontera abcdefa de un recinto Poincaré—Bendixson, se parte de a(1,0). La

curva [ab[ es Y = In X, con n(1/X,—1), dando para el flujo (11)

X (2042)

p= X-(1+\/§)+1 — 20 +2'Y

Como [ab] es
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Y < 202X (curva X =0)
X{1++2) +1
sera
b<X. 202 X

L+ V2)x+1 0 (1+v2)x +1

Ahora bien, en [ab[ es X = 1 (= en a), luego la cantidad
X(vV2 -1)>+2 -1
lo cual implica que

2072 + 40X — 20(1 + +/2)-X — 20
(1+ ﬁ)x +1

Asi pues, p < 0 en [ab[. Se sigue por la vertical [bc[, desde X=0aY=0.5e sigue por la

<0

vertical [bc[, desde X =0 a Y =0. Alli, n(1,0), X<0 (=enb), p= X<0 (= en b). La
horizontal [cd[ llega hasta la recta X = 1; en [cd[, n(0,1), Y <0 (=enc), p =Y <0 (=enc).

La linea [de[ es de la forma Y = In X + C, en ella n(—-1/X,1),y se tiene

— 2042

= X- +20 -2
P ( @L+~2)X +1 )
Pero en [de][ es
Y > 202:X (curva X = 0)
(1 + \/E)X +1
luego
b < X( ~ 2072 20 0X_

+ 20 +
1L++2)X +1 @L+2)X +1
Ahora bien, en [de[ es X < 1(=en d), luego X(vV2-1) < v2) -1, y la cantidad
~20V2 - 40X + 20(1+ X+/2) + 20 .
<
1L++2)X +1
de modo que p < 0 en [de[. Se desciende por [ef [ hasta el eje X; en [ef[, n(-1,0), X >0 (=ene),

p :—X <0 (= ene). Cierra el recinto el tramo [fa[ del eje X, donde n(0,-1), Y > 0, con lo que
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p=-Y <0

En virtud del teorema de Poincaré—Bendixson, existe, dentro del recinto determinado por
abcdefa, al menos un CL de (47), en torno al SS Xo =1, Yo = 8,284.

I c e
% 4, Y =0
| ss;/.,-.
////I bX_O
ee !
I
|
I
|
I
al
[ ] &
f 1 X

Figura 5. Plano de fases de (47).
M6 (0, 0, 2, 0).Sean las reacciones
2X —5 5 7+ X
B+Z—> R, +X
R, +X 23R,

R, + X 5 R,

(48)
R, + X —%5 2X
R, +X 5P, +X
R, > F
R, > F
regidas por las ecuaciones [21]
X =~k X2+ B-Z — KRy X — KRy X — oot KyRX
Z=kX'-BZ
(49)

Ri = B-Z - k,R:X — kR, X — FR,

Ro = k,-R,-X — k,R,-X— k,R,-X — FR,

Suponiendo z= 0, R = 0, sumando las I.?jy denotando Y = ZR, (ka = ka2 + k3), resulta
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. I .3
X = —k, Xy + JakX

k,X +F (50)
Y = kX% — kXY~ FY

En el caso concreto ki =15, ka =1, ks =1, F = 2 (cf. 29) posee un SS en el origen 'y en Xo

=1, Yo=2,071. Este ultimo conduce a una matriz
2,677 -1
7,071 -2,414
conT=0,263>0,D =0,609, A <0 ese SS es foco inestable.

Para construir un recinto Poincaré—Bendixson [2], se parte del punto a (1,0) [9,13,18] (véase

la Figura 6). La linea [ab[, que llega hasta X =0, esY=1InX,con ﬁ(—l/X,l),y el flujo (11) es por

ella

o 572-X x4
p_x{(uﬁ)-xu > \/EY}

S

a

-

1 X
Figura 6. Plano de fases de (50).

Como es [ab[ es Y < [5v2-X2/(1+ V2 )-(X +1)] (curva X = 0) sera

2X +/2
<5X? -1
P ((1+ J2)X +1 )
Peroen [ab[ es X >1, luego X-(vV2—-1) = V2 — 1, lo cual implica
2X + 2 <0
(1++/2)-X +1
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asip < Oen [ab[.
Se sigue por la vertical [bc[ hasta Y = 0; en [be[, n(1,0), X < 0 (=enh),p =X < 0 (=en
b). Luego se sigue por la horizontal [cd[ hasta la recta X = 1; en [cd[, ﬁ(O,l), Y < 0 (=enc),p=

Y < 0 (=en c). La linea [de[, que llega hasta cortar de nuevo a X = 0,esdelaformayY =In X + C;

su vector n(—1/X,1),y dap

— 52X

=X +5X —~2Y
P ((1+\/§)X +1 )
Como en [de[ es Y > 5v2-X2/[(1 +v2)-X + 1] (curva X = 0)
sera
0 < BX%(1- X+ V2
(1+v2)x +1
pero en [de[ es X < 1, luego X(\/E —1)3 (\/E —1), lo cual implica
Lo 2X+N2
(1+v2)x +1

asi p<0en [de[.

Se desciende por la vertical [ef[ hasta el eje X; en [ef], ﬁ(—l,O), X >0 (=ene),p=-
X <0 (= en e). Cierra el recinto el tramo [fa[ del eje X, donde n(0,—1), Y > 0,p=- Y <0.

En virtud del teorema de Poincaré—Bendixson [11], existe dentro del recinto creado por
abcdefa, al menos con CL de (50), en torno al SS foco inestable Xo = 1, Yo = 2,071. Por Gltimo, se
estimd conveniente analizar algun caso con & =1 [1].

M7 (1, 0, 2, — ksX?). Sean las reacciones
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2X —8 5 7+ X
B+Z——>R,+X
R, +X %>R,

R, + X — 5 R,

R, + X —% 2X

(51)
R, +X 5P, +X
R, > F
R, > F
2X —5 5 X
regidas por las ecuaciones [21]
X =~k X2+B-Z — KRy X — K Ry-X — .ot Ky Ry X+ FR, —k X
Z=kX*—BZ
(52)

Ri = B-Z -k, R, X - kR;:X — FR,

R: = k,RyX - kyR,-X — k,R,-X — FR,
Suponiendo Z= 0, F.Ql =0, sumando las Ifil = 0,sumando las Ii,— y denotando

Y = ZR, (ks + k2 + ks), resulta

Ky X + F)kX?

X = —k, XY +
k,X + F

Y = kX2 — ke XY — FY

En el caso concreto k2 =1, ka3 =1, k1 =15, ks =12, F=2, existeun SSen Xo=1, Yo=5; la

matriz es
2y
8
25 -3

cuyaT=1/8>0,y D=125/8 >0, T?—4D < 0, de modo que dicho SS es foco inestable.

Para construir un recinto Poincaré—Bendixson [2], con recinto Poincaré—Bendixson, se parte

de a(1,0) (véase la Figura 7). La curva [ab[ es Y = 2-In X con n(2/X,—1), y el flujo (11) queda:
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p=X(— 15X +Y)

pero en [ab[, Y < [15-X-(X + 2) /2(X + 1)] — (25X/4) (curva X = 0), luego

15X (X +2
D < 5(X+2)_§_15X+ 5X (X + )_25X_
X +1 2 2(X +1) 4

Figura 7. Plano de fases de (53).

Ahora bien, al ser en [ab[, X > 1, también es X? + 3X — 14 > 0, lo que equivale a decir que
la cantidad

15(X + 2 15X (X + 2
A5X*2) 25 g, 19X(X+2) 25X
X+1) 2 20X+1) 4

luego p < 0 en [ab[.

Se continua en la vertical [bc[ hasta llegar a Y = 0; en [bc[, n(1,0), X <0 (=enh),p=
X <0 (= en b). La horizontal [cd[ llega hasta la recta X = 1; en [cd[, n(0,1), Y <0 (=enc), p=
Y<0 (=enc).

La curva [de[, hasta volver a X = 0, es de la forma Y = 2:In X + C, con n(2/X,-1); se

obtiene para el flujo

~15(X+2) 25

= X- + — +15X -Y
P ( X+1 2 )
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pero es [de[, Y > [15 X(X + 2)/2(X + 1)] — 25X/4 (curva X =0 ), por lo tanto sera

0 <X —15(X + 2) N §+ 15X — 15X (X + 2) N 25X
X+1 2 2(X +1) 4

Ahora bien al ser en [de[, X <1, tambiénes 11Y? + 3Y — 14 < 0, lo que significa que la

cantidad

15(X+2) 25 o 15X(X+2) 25X
X +1 2 2(X +1) 4

luego p <0 es [de[. Se desciende en vertical [ef[ hasta el eje X: en [e f][, ﬁ( -1,0), X >0 (=ene),p
= _X <0 (=ene),p=- X <0 (= en e). Cierra el recinto el tramo [f a] del eje X, donde

n0,-1), Y >0,p=-Y <0,
En virtud, pues, del teorema de Poincaré—Bendixson, existe, dentro del recinto delimitado

por la frontera abcdefa, al menos un CL de (53), que rodea al SS foco inestable Xo =1, Yo = 5.

RESUMEN Y CONCLUSIONES
Se ha estudiado una nueva gama de osciladores quimicos para reacciones de polimerizacion
[2]. Ella tiene en comun con la p presentada en el articulo anterior, la irreversible caracteristica [1]

de que la terminacion de R1 debe originar polimeros de longitud de cadena 1, esto es, monémero X.

También comparten ambas familias de osciladores la hipotesis de hacer R, =0, lo cual puede

considerarse algo mas arbitrario y discutible, pero que guarda relacion con la designacion [2] de

variables X y ZRJ. =Y, en el concepto propuesto de “polimerizacion oscilante”. Esta hipotesis,

combinada con la anterior idea comun, conduce a términos de la forma X/(ksX + F), (afin por cierto
a la de Michaelis—Menten? en cinética enzimatica [30]), cuya importancia es fundamental en la
consecucién de comportamiento de ciclo limite (CL).

La principal caracteristica propia de los mecanismos propuestos en este articulo se refiere a
la forma de la terminacion, por transferencia al monomero [1]. Ciertamente este tipo de terminacion

presta caracter de autocatalisis [29] a la irreversible etapa R1 + X = 2X.

! Michaelis-Menten no era una persona sino dos: Leonor Michaelis y Maud Leonora Menten. En la época en la que se
desarrolla esta historia, finales del siglo XIX y principios del siglo XX, no era nada propicia para que una mujer y un
hombre de raza negra le fueran reconocidos sus méritps. La ecuacion de Michaelis-Menten es capaz de describir el cambio
sufrido por la velocidad de una reaccion catalizada por una enzima al variar la concentracion del sustrato.
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En general dicha terminacion ha de ir combinada con eliminacion por flujo [29], Rj ——,
si bien, en algin modelo (M4), ha sido posible hacer F = 0, prescindiendo de dichos términos, y en
otro modelo (M7) dichas etapas se han podido reconvertir a una terminacion alternativa [1, 26] en

competicién con laotra (R, —— X, R; —— P, (j+1)).

Es posible obtener osciladores para € = 1, pero requieren (M1) afiadir autocatalisis adicional

[2,29] en el historial H(X). EI resto de los osciladores obtenido lo han sido para € = 0, lo cual

introduce una dicotomia de contribuciones de la iniciacion a X y a Y cuya discutibilidad se ha
tratado de atenuar formulandola de la manera més simple y plausible que se ha podido (X cataliza la
produccion de R1 a partir del precursor B, en los casos n = 1; en los casos n = 2, la activacion se da
en dos pasos, a través de una especie intermedia Z).

En estos casos € = 0 se obtienen osciladores para historiales enormemente H(X)
enormemente sencillos, incluyendo el H = 0; o en todo caso el flujo de entrada de monémero (H =
A) [29], hipotesis muy plausible para una biopolimerizacidén en una célula viva, sistema abierto
[17,30].

Cuatro de los siete modelos obtenidos son “degenerados” (es decir, para X = 0, X=0). Esta

circunstancia puede incluso aumentar su plausibilidad (si no hay mondémero, no hay
polimerizacion), y no es ébice para efectuar la prueba Poincaré—Bendixson.

No se ha explorado, en los casos posibles hallados, el espacio completo de los parametros
[5], aunque si se ofrecen generalizaciones de algunas imposibilidades (por ejemplo, las iniciaciones
de orden cero, algunas exclusiones en los casos n =1, ....), confinandose desde luego el interés del
disefio sistemético de modelos por medio de la técnica aqui usada de bloques cinético—formales [2]
constituyentes a términos de las ecuaciones diferenciales.

Para el andlisis de éstas Ultimas, se continian empleando las técnicas de plano de fases [17],

centrados sobre todo en los teoremas de Lyapunov [22] y de Poincaré—Bendixson [12].
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