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INTRODUCCIÓN 

 En un artículo previo se intentó obtener mecanismos de polimerización, de tal modo 

modificados, que presenten oscilaciones de ciclo límites (CL) [1–6]; se usaban dos variable [7–10] 

con el fin de probar la existencia de dicho CL empleando el teorema de Poincaré–Bendixson (PB) 

[11–20]. 

 Este trabajo propone una ampliación del contenido del anterior, extendiéndose a otra nueva 

gama de osciladores. Las hipótesis mecanísticas básicas se resumen en la sección II. La Sección III 

repasa la teoría general que se usará y la aplica a las hipótesis planteadas. Una casuística de los 

modelos se discute en la Sección IV, y la Sección V analiza en concreto los mecanismos 

seleccionados. 

 II. Hipótesis básicas. La polimerización se propaga “paso a paso” por adición del 

monómero X (cuya concentración es una de las variables que oscilan) a las cadenas activas Rj 

     1
ik

j jR X R ++ ⎯⎯→
     (1) 

la curva de concentraciones jY = R es la otra variable que oscila. 

 La especie 1R es producción en la iniciación: 

      iV

1

ε R⎯⎯→      (2) 

etapa que contribuye con V(X) a 
• •

•
1R ( = d/dt), y con ε·V(x) a X.−  El parámetro ε  puede valer 0 ó 

1.  Diferentes funciones V(X) se postularán más adelante. 

 La terminación ocurre por transferencia al monómero [21]: 

    

3

3

1 2

( 1)

k

k

j j

R X X

R X P X j

 + ⎯⎯→


+ ⎯⎯→ +      (3) 

 Las especies jR  son eliminadas por 

     

F

1

F

j

R δ X

R

 ⎯⎯→


⎯⎯→

     (4) 
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δ  puede valer 0 (en la mayoría de los casos estudiados) o bien 1 (entonces 4 puede interpretarse 

como una terminación alternativa, por ejemplo por transferencia a disolvente. 

 Además X está involucrado en otros procesos [2], que contribuyen a 
•

X  con H(X). 

Diferentes funciones H(X), las más sencillas posibles, se postularán más adelante. 

 III. Teoría general. Para unas ecuaciones cinéticas de la forma [3] 

      

•

•

X = S(X, Y)

Y = N(X, Y)







    (5) 

los estados estacionarios (X0, Y0) (SS = steady state) se hallan de 

      

•

•

X = 0

Y = 0







     (6) 

 Según el primer teorema de Lyapunov [22–25], dada la matriz 

     
0 0

0 0

S S
c = y =

X Y

N N
a = b =

X Y

     
         

     
    

     

   (7) 

cuya traza  es 

      T  =  b  +  c     (8) 

cuyo determinante es 

      D  =  b·c  –  a·y    (9) 

y cuyo discriminante es 

       =  T2  – 4D     (10) 

 Si D > 0 el SS es nodo ( Δ  > 0) o foco ( Δ  < 0); entonces si T > 0, el SS es inestable. 

 Según el teorema Poincaré–Bendixson [11–17], si se puede tener una región del plano de 

fases  X,Y ,  encerrado por una frontera cerrada tal que 

      
• •

p = n· X, Y 0
 

 
 

    (11) 

a lo largo de toda ella [13,18]. Donde n  es normal a la frontera, en sentido saliente del recinto que 

encierra), y en dicha región sólo hay un SS del tipo nudo o foco, y ese SS es inestable, dentro de tal 

región y rodeando al SS, existe al menos un CL de (5). 
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 En los mecanismos que se estudiarán, y de acuerdo con las hipótesis enunciadas, las 

ecuaciones cinéticas serán de la forma [26] 

  

•

2 1 2 2 3 1 1

•

1 2 1 3 1 1 4 1 1

•

2 2 1 2 1 3 1 1 4 2 1

X = ε·V k R ·X k ·R ·X ...+ k ·R ·X + δ·F·R + H(X)

R = V k R ·X k ·R ·X F·R = V k ·R ·X F·R

R = k R ·X k ·R ·X k ·R ·X F·R = V k ·R ·X F·R


− − − −



 − − − − −



− − − − −

− − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −

 (12) 

con k4 = k2 + k3. Se añade la hipótesis 
•

1R = 0  siempre, con lo cual (tras sumar las Rj y denotar 

jY = R ), resulta 

   

( )•
3

2

4

•

3

V k ·X + δ·F
X = ε·V k ·X·Y + + H(X) = S(X, Y)

k ·X + F

Y = V k ·X·Y F·Y = N(X, Y)


− −




− −

    (13) 

la existencia del estado estacionario (SS) exige el cumplimiento de 

    

( )0 3 0

0 2

4 0

0
0

3 0

V k ·X + δ·F
H = ε·V + k ·X·Y +

k ·X + F

V
Y =

k ·X + F








  (14) 

 Los elementos de la matriz (7) se expresan [27] 

    
( ) ( ) ( )

( )

´

4 0 0 3 3 0 0 0 3 0 4´ ´

0 2 0 02

4 0

· V ·k + k ·X + δ·F · V · k ·X +δ·F ·k
· k ·Y

k ·X + F

k X F V
c V H

 + − = − − + +  

      2 0g = k ·X−           (15) 

      ´

0 3 0a = V k ·Y−  3 0k ·X Fb = − −  

 La condición T > 0 exige 

´

4 0 3 0 0 3 0 0 3 0 4´ ´ 2 0
0 0 3 02

3 0 4 0

( · ) · ( · · ) ( · · )·
H ·V ·

· ( · )

k X F k V V k X F V k X F kk V
k X F

k X F k X F

 


 + + + − + − − +  +
+ +

 (16) 

por supuesto, al ser b < 0, es necesario que c > 0. La condición D > 0 se plantea: 

( )
( ) ( )( )´

4 0 3 0 0 3 0 4´ ´ ´2 0 3 0
3 0 0 0 2 0 02

3 0 4 0 3 0

k V +F k V +V k X + F kk V k V
k V + F H V k X (V ) 0

k V +F ( + F) k X +Fk X




 
− − − + + −  

  

(17) 

 Por supuesto, al ser g < 0, b <0, para que cuando T > 0 sea D > 0 se requiere como condición 

necesaria que a > 0. 
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 A continuación se examinaran algunas posibilidades, en busca del cumplimiento de las 

ecuaciones (14), (16) y (17). 

 IV. Seleccionando osciladores. Para comenzar, se observa que una iniciación de orden cero, 

con V = A, ´

0V  = 0, conducía a valores de a < 0 que violaban la condición necesaria antes mencionada; 

se excluyen, pues, estas iniciaciones. 

 La mayoría de los casos estudiados, lo han sido para δ = 0, con lo que las etapas (4) serían 

simplemente un flujo selectivo que elimina las especies Rj. Para las velocidades de iniciación se 

supusieron funciones de la forma [28] 

       1·
nV k X=

     (18) 

con n = 1 ó 2 ya que n = 0 está excluida. 

 Se hizo un primer estudio de posibilidades para el conjunto concreto de parámetros (en 

unidades apropiadas): k2 = 1, k3 = 1, k4 = 2, F = 2, y X0 = 1 (19), para el cual, según (14), con δ = 0, y 

con (18): 

     1 1
0 1 0

k k
H = ε·k + > 0 Y =

12 3
    (20) 

y según (14) 

  
( )1 ´1

1 0 1

2 1 1
; 1; ; 3

3 8 3

k n k
c nk n g a k n b

+  
= − − + + = − = − = − 

 
  (21) 

 

 En aquellas variantes en que se encontraron posibilidades de osciladores, éstas eran aceptadas 

para un posterior desarrollo en la Sección IV. Allí donde se apreciaran imposibilidades, se intento 

generalizarlas para conjuntos de parámetros distintos de (14). 

 Por ejemplo esta primera aproximación  a la selección de modelos: 

 Caso ε = 1. Entonces, por (20), Ho = (k1·13)/12 > 0, lo que excluiría H = 0. La variante H = 

A implica, por (20), H0 = A = 13k1/12, siendo ´

0H 0,=  por (21) se ve que la condición necesaria c > 

0 se expresa n < 19/18. El valor n = 1 puede cumplir esto, y el modelo correspondiente se detallará 

en la Sección V; no vale, sin embargo, n = 2. 

 Más posibilidades parecieron ofrecer los casos  = 0. 

 Caso ε = 0. Aquí, por (20), H0 = k1/12 > 0 y con los datos (19) la variante H = 0 no es 

posible. La variante H = A implica, por (20) H0 = A = k1/12, siendo 
´

0H = 0,  por (21) se ve que la 

condición necesaria c > 0 se expresa n > 5/6; el valor n = 1 la satisface, y el modelo correspondiente se 
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detallará en la Sección V; el valor n = 2 también vale, y el modelo correspondiente se detallará en la Sección 

V (para éste último, se ve que también es imposible con F = 0). 

 Seguidamente se trata de generalizar [2] los resultados sobre imposibilidades encontradas en el 

párrafo anterior. Para ello, se reescribe la ecuación (13) correspondiente a X
•

, teniendo en cuenta (18), 

como 

     
•

2X = H(X) X(k Y f)− −     (21) 

con (22) 

     

1 3
2

4

( ) · n k X F
f X k X

k X F


−  +

= − + 
+     (22) 

 Asimismo, se tendrá 

      
( )0 0 2 0 0H X k Y f= −

    (23) 

y 

      
´ ´0
0 0 0

0

H
c = H + X f

X
−     (24) 

 Para ε = 1, n = 2, resulta que 

    
´ 2 3

1 2

4 4

 k X + F Fk X
f = k 0

k X + F  (k X + F)

 
− −  

 
 

ya que (k2X + F)  > F > (Fk3X)/(k4X + F). Con un foco ´

0 0,f  al ser c > 0 necesita, por (24), que sea 

´

0 0 0H H /X .  Esto no se cumple ni con H = 0, ni con H = A o H = AX, confirmando las exclusiones 

arriba obtenidas para los dados (14). 

 Para  = 1, n = 1, resulta ya  

      
´ 1 3

0 2

4 0

0
( )

Fk k
f

k X F
= 

+
 

 Por (23), es  

    3
0 2 0 0 1 0

4 0

(1 ) 0
k X + F

ok X
H k X Y k X= + −   

luego no sirve la variante H = 0, como se vió arriba para los datos (19). Con H = A, 
0

´H = 0, la 

condición c > 0 en (24) será 
´

0 0 0 0X ·f > H /X , lo que rinde 

   
( )

3 3 2

2

4 0 3 04 0

· ·
1

·

o o oF k X k X k X

k X F k X Fk X F
+  +

+ ++
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 El cumplimiento de esta desigualdad exige el de  

    3 0 2 0

2

4 0 4 0

1
( ) ( )

Fk X k X

k X F K X F
+ 

+ +
 

 Denotando 

   p = k3/k2     y     
2 0

F
φ =

(k X )
    (25) 

se reformula como 2p(1 + p + φ) + p·φ > (1 + p +φ) ,  esto es, 2φ + 2φ + (1 + p) < 0.  Pero esto es 

imposible ya que todos los coeficientes del término son positivos; luego si ε = 1, n = 2,  la variante H 

= A queda excluida en general. 

 Sin embargo, se descubrió que no podían generalizarse las exclusiones de H = 0 para los casos   

ε = 0.  Para ε = 0, la variante H = 0 requiere 

     2 3

3 0 4 0

k k
=

k X + F k X + F
    (26) 

lo cual no se cumple con (19), pero sí puede ser cierto con otros datos. Usando las notaciones (25) y 

(26) resulta 

      
21 + p p

φ =
p 1

−

−
    (27) 

 Para p < 1 es imposible lograr φ > 0, pero si se puede si ( )1 < p < 1 + 5 /2 . 

 Si n = 1, los elementos  de (7) en la variante H = 0 son 

 
( )

1 3 0 1
2 0 3 02

4 0 3 0

k k FX F·k
· a =  ( )

(k X + F) k X + F
c g k X b k X F= = − = − +   (28) 

 Luego puede tenerse T > 0 si k1 > [k3·X0 + F)·(k4·X0 + F)]2/(Fk3·X0) y para D > 0 se precisa 

k2/(k3X0 + F)2 > k3/(k4X0 + F)2, lo cual, teniendo en cuenta (26), conduce a  (k4·X0 + F) >  (k3·Xo + 

F), que es verdadero siempre. Con los datos (unidades apropiadas) 

  k2 = 1,          k3 = √2,         F = 1,    X0 = 1,    ( p = √2,  φ = 1)  (29) 

se desarrolla un modelo en la Sección V. 

 Si n = 2, los elementos de (7) en la variante H = 0 son 

( )

( )

2

1 3 0 4 0

2

4 0

k ·k ·X k X + 2F
c =

k ·X + F
;  2 0g = k ·X− ;  1 0 3 0

3 0

k ·X (k ) + 2F)
a =

k ·X + F
; 3 0b = (k ·X + F)−  (30) 

 Puede tomarse T > 0 si  
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( )

( )

2

4 0 3 0

1 2

3 0 4 0

( · ) ·

· · 2 )

k X F k X F
k

k X k X F

+ +


+
 

y para D > 0 se precisa, teniendo en cuenta (26) 

     

3 0 4 0

3 0 4 0

· 2 2

·

k X F k X F

k X F k X F

+ +


+ +
 

     3 0 4 0

1 1
·

F F

k X F k X F
+  +

+ +
 

lo cual es siempre cierto. Un modelo, basado en los datos (29), se desarolló en la Sección V. 

 Por último, se investigó el campo  δ = 1 (terminaciones competitivas, utilizando los 

parámetros (19). Con δ = 1  según (14) 

      0 1

5
H = k ε

12

 
− 

 
    (31) 

y según (15) 

      
( ) ´11

1 0

6 1
· ·

3 8

k nk
c n k H

−
= − − + +    1

1
1; ;

3
g a k n

 
= − = − 

 
    b = 3−   (32) 

 Para los casos ε = 1, por (31), H0 = 7k1/12 > 0 lo que excluye la variante H = 0. En la 

variante H = A, con 
0

´H ,  la condición necesaria c > 0 es, por (32), (–11 – 6n)/24 >0, imposible si n 

> 0. La variante H = A se excluye. Si la variante H = A·X, H0 = A, 
0

´H = A,  = (7k1/12) y la 

condición (c > 0, por (32), (– 6n + 3)/24 >0 y la condición c >0 por (32), (–6n + 3)/23 > 0 si n ≤ 

1/2, la cual tampoco se da, dicha variante H = A·X es imposible. 

 Casos  ε = 0. Por (31) H0 = –5k1/12 < 0, esto excluye automáticamente funciones como H = 

0, H = A, H = A·X … Se probó entonces la degradación de primer orden H = – k5X, con  H0 = – k5 

= –5k1/12  →  H5 =5k1/12, y ´

0 5 1H = k = 5k /12.− −  Con ello, por (32), resultan c = (18n – 

21)/24·k1, g = –1, a = k1(n – (1/3)), b = – 3. La condición necesaria c > 0 e quivale a n = 21/18; n = 

1 no la satisface, pero sí n = 2. No obstante, esta opción, con c = 5k1/8, g = – 1, a = (5/3)k1, b = – 3, 

da D = –51/4/24 < 0. Se probó seguidamente la degradación de segundo orden, H = – k5·X2, con 

H0 = –k5 = 5k1/12  →   k5 =  5k1/12, y 0

´

5 12 5 / 6.H k k= = −
 Con ello, por (32) resulta C = [k1·(18n 

– 31]/24, g = – 1, a = k1(n – 1/3), b = – 3. La condición necesaria c > 0 equivale a n  31/18; n = 1 no 

la satisface, pero sí n = 2. En esta opción, se tienen c = 5k1/24, g = – 1, a = 5k1/3, b = –3, originando T =  

5k1/24 –3 > 0 si k1 > 72/5 y D = 25k1/24 > 0. Este modelo se desarrolló en la Sección V. No se hizo 

aquí ningún intento de generalizar las imposibilidades obtenidas. 
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 V. Mecanismos de reacción. Esta sección plantea ya esquemas cinéticos de reacciones, cuyos 

análisis [21] se ajustan a los modelos de osciladores seleccionados en la sección anterior. Puede 

diseñarse un simbolismo [2]  δ, ε,n, H para denotar los diferentes modelos. 

 M1 (0, 1, 1, AX). Sean las reacciones 

     

1

2

3

3

3

k

1

k

1 2

k

2 3

k

1

k

2 2

F

1

F

2

X R

R + X R

R + X R

-----------------------------

R + X 2X

R + X P + X

-----------------------------

R

R

-----------

A + X 2X

 ⎯⎯→


⎯⎯→
 ⎯⎯→




⎯⎯→


⎯⎯→


 ⎯⎯→


⎯⎯→



→


    (33) 

 Regidas por las ecuaciones [21,29] 

   

•

1 2 1 2 2 3 1

•

1 1 2 1 3 1 1

•

2 2 1 2 2 3 2 2

X = k ·X k ·X·R k ·X·R ... k ·X·R + AX

R = k ·X k ·X·R k ·X·R F·R

R = k ·R ·X k R ·X k ·X·R F·R

--------------------------------------------------------------


− − −



 − − −



− − −



   (34) 

 Suponiendo 
• •

1 jR = 0, sumandolas R denotando R = Y, resultanj y   

     

2•
3 1

1 2

4

•

1 3

k ·k ·X
X = k ·X k ·X·Y + + A·X

k ·X +F

Y = k ·X k ·X·Y F·Y


− −




− −

  (35) 

 En el caso concreto (unidades apropiadas) k2 = 1, k3 = 1, F = 2, k1 = 25, A = 325/12, se tienen 

X0 = 1, Y0 = 25/3, la matriz es 

      

25
1

8

30
3

3

 
− 

 
 − 
   

con T = 1/3 > c, D = 175/24  > 0, ∆ = 0, el SS es foco inestable. 

 Para construir la frontera abcdefa [2] de un recinto Poincaré–Bendixson [9, 13, 18], se parte de 
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a (1,0) (Figura 1). La curva [ab[ es Y = 2·lnX, en ella n(2x,1),  y el flujo (11) vale  

p = (25/6) + (25X/(X + 1)) – 25X + XY 

 pero en [ab[ es Y < [(25/12) + 25X/2(X + 1)] (curva
•

X = 0 ), luego se cumple 

    
225 25X 25X

p
6 2(X + 1) 12

 − +  

Dado que en [ab[ es además X ≥ 1 (= en a), la cantidad (5X2 – 3X + 2) ≤ 0, luego  γ < 0 en [ab[. 

 

Figura 1. Plano de fases de (35). 

 Tras cortar en b a 
•

X = 0,  se sigue en la vertical [bc[ hasta 
•

Y = 0. En  b,c ,  

n(1,0),
•

X 0 (= en b),  luego p  = 
•

X  ≤ 0 (= en b). 

 

 El tramo  c,d  llega hasta la vertical X = 1. En  
•

c,d , n = (0,1), Y 0 (= en c),  y p = 

Y 0 (= en c).
•

  

 La curva [de[, hasta llegar de nuevo a 
•

X = 0, es del tipo Y = 2·ln X + C, con n( 2/X, 1),−  

donde 

     
25 25X

p –    –  XY
6 X  1

= +
+

 

Pero en [de[ es Y > (25/12) + 25X2/2(X + 1) (curva 
•

X = 0 ), luego 

          
( )

225 25X 25X
p –    –  

6 2 X  1 12
 +

+
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ahora bien, – (25/6)  +  25X2/2(X + 1)  –  25X/12   ≤   0  en [de[; esta última desigualdad equivale a 

5X2 – 3X + 2  ≤  0, lo cual es cierto en [de[, para X ≤  1. Luego en [de[, p < 0. Por la vertical [ef [ se 

llega al eje X; en ella n( 1,0),−  
•

X 0  (= en e), y p = –
•

X 0  (= en e). Cierra el recinto el tramo [fa[ 

del eje X, donde 
•

n(0, 1,), Y > 0,− luego p = –
•

Y < 0. en virtud del teorema de Poincaré–Bendixson, 

existe, dentro de este recorrido, al menos un CL de (35), en torno al SS inestable. 

 M2 (0, 0, 1, A). Sean las reacciones, 

      

2

3

3

3

1

k

1 2

k

2 3

k

1

k

2 1

F

1

F

2

B + X R + X

R + X R

R + X R

---------------------------

R + X 2X

R + X P + X

---------------------------

R

R

----------------------------

A X

→


⎯⎯→
 ⎯⎯→




⎯⎯→


⎯⎯→


 ⎯⎯→


⎯⎯→



→

    (36) 

regidas por las ecuaciones [21,29] 

    

•

2 1 2 2 3 1

•

1 2 1 3 1 1

•

2 2 1 2 2 3 2 2

X = k ·R ·X k ·X·R ... + k ·X·R + A

R = k·B·X k ·X·R k ·X·R F·R

R = k ·R ·X k ·R ·X k ·X·R F·R

-----------------------------------------------------


− −



 − − −



− − −



   (37) 

 Suponiendo 
•

1R = 0, sumando las 
•

jR  y denotando 
•

j 4 2 3R = Y·(k = k + k )  resultan 

     

2•
3

2

4

•

3

k ·B·X
X = k ·X·Y + + A·

 k ·X + F 

Y = B·X k ·X·Y F·Y


−




− −

    (38) 

en el caso concreto (unidades apropiadas) k2 = 1, k3 = 1, F = 2, B = k1 = 84, A = 7, se tienen X0 = 1, Y0 

= 28; la matriz es 
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7
1

2

56 3

 
− 

 
−   

con T = (1/2) > 0, D = 91/2 > 0,  < 0: el SS es foco inestable. 

 Para construir la frontera abcdea [2,9,15,18] de un recinto Poincaré–Bendixson, se parte de 

a(1,0) (véase la Figura 2). La curva [ab[ es Y = 2·ln X, en ella n(2/X, 1,)−  y el flujo (11) vale  

( )

2 14 84X
p   –    X·Y

X X  1

 
= + 

+ 
 

pero en [ab[ es 

 
7 42X

Y +
X X + 1

   (curva 
•

X  = 0)  

luego  

     
( )

2 14 42X
p   7   –   

X X 1
 +

+
 

por ser en [ab[  X ≥ 1  (= en a),  

  
2 214 14 14 42X 42X

 14,   7 21 7 21
X X X X + 1 X + 1

 → +  → + −  −  

Ahora bien, en [ab[,  21 – [(42X2)/(X + 1)]  ≤ 0, ya que  2X2 –  X – 1  ≥  0, para X ≥ 1; luego 

    
2 214 42X 42X

p 7 21 0
X X + 1 X + 1

 + −  −   

luego p < 0 en [ab[. 

 
Figura 2. Plano de fases de (38). 



Revista Iberoamericana de Polímeros        Volumen 22(1), Enero de 2021 
Katime et al.                      Osciladores poliméricos 

                     Rev. Iberoam. Polim., 22(1), 25-49 (2021)  36 

            Tras entrar en b a X = 0, se sigue en la vertical [bc] hasta
•

Y = 0.  En [bc[, n(1,0),
•

X 0  (= en b), 

luego p = 
•

X 0  (= en b). El tramo [cd[ llega hasta 
•

X = 0;  en él, n(0,1),
•

Y 0  (= en c), y 

p
•

= Y 0 (= en c). Se vuelve al eje X por la vertical [de[, en ella n( 1,0),−
•

X 0  (= en d), y p = –

•

X 0  (= en d). Cierra el recinto el tramo [ea[ (del eje X, donde n(0, 1),−  
•

Y  > 0, luego p = –
•

Y > 0.  

En virtud del teorema de Poincaré–Bendixson, existe, dentro de ese recinto, al menos un CL de (38), 

en torno al SS inestable. 

 M3 (0, 0, 2, A). Sean las reacciones 

     

1

2

2

3

3

k

1

k

1 2

k

2 3

k

1

k

2 2

F

1

F

2

2X Z + X

B + Z R + X

R + X R

R + X R

------------------------------

R + X 2X

R + X P + X

------------------------------

R

R

A X

 ⎯⎯→


⎯⎯→
 ⎯⎯→

 ⎯⎯→




⎯⎯→


⎯⎯→




⎯⎯→
 ⎯⎯→

 →


    (39) 

 

regidas por las ecuaciones [21,29] 

   

•
2

1 2 1 2 2 3 1

2

1

•

1 1 1 3 1 1

•

2 2 1 2 2 3 2 2

X = k ·X + B·Z + k ·R ·X k ·R ·X.....+ k ·R ·X + A

Z = k ·X B·Z

R = B·Z k ·R ·X k R ·X F·R

R = k ·R ·X k ·R ·X k R ·X - F·R

•


− −




−

 − − −

 − −

 (40) 

resultan 

     

3•
3 1

2

4

•

1 2 3

k ·k ·X
X = k ·X·Y + + A

k ·X +F

Y = k ·X k ·X·Y F·Y


−




− −

   (41) 

 En el caso concreto (con las unidades apropiadas) A = 1, k1 = 12, k2 = 1, k3 = 1, F = 2, se tiene 

X0 = 1, Y0 = 4; la matriz es 
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3,5 1

20 3

− 
 

− 
 

con T = 0,5 > 0, D = 9,5 > 0, Δ  < 0: el SS es foco inestable. 

 Para construir un recinto Poincaré–Bendixson (véase la Figura 3), se parte del punto a(1,0) 

[9,13,18]. La curva [ab[ llega hasta 
•

X = 0, y es Y = 2·ln X; en ella, n(2/X, 1),−  y el flujo (11) vale 

( )

32 12X
p –   + XY

X 1X
=

+
 

En [ab[, Y < (1/X) + (6X2)/(X+1) (Curva
•

X  = 0 ), luego  

( )

3 32 6X 6
p 1 –   < 3  

X 1 ( 1)

X

X X
 + −

+ +
 

como en [ab[ es X ≥ 1, (2/X) + 1 ≤  3,  

3 32 6 6
p < + 1 3

X 1 1

X X

X X

     
−  −     

+ +     
 

 Dado que la curva u = 2X3 – X – 1   0 para X   1 (para X  1 (para X = 1, u = 0, para X   1, 

u´= 6X2 – 1 > 0), se cumple  (3 – 6X3)/(X + 1)   0 es [a,b[, luego p < 0 en [a,b[. 

 Se sigue por la vertical [bc[ hasta 
•

Y = 0;  en [bc[ es n(1,0),  y 
•

X 0  (= en b), luego 

•

p  =  X  0  (= en b). Desde c se va en horizontal hasta cortar de nuevo a
•

X  = 0  en d; es [cd[, 

n(0,1),
•

Y 0  (= en c). y 
•

p = Y 0−   (= en d). Cierra el recinto el tramo [ea[ del eje X desde 

n(0, 1),−  Y 0, Y 0.p
• •

 = −   

 En virtud del teorema de Poincaré–Bendixson, existe, dentro del recinto cuya frontera es 

abcdea, al menos con CL de (41) en torno al SS inestable. 
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 Figura 3. Plano de Fases de (41). 

 

El siguiente modelo es simplemente una variante de este para F = 0. 

 

 M4 (0, 0, 2, A; F = 0). Sean las reacciones 

     

1

2

2

3

3

k

1

k

1 2

k

2 3

k

1

k

2 2

2X Z + X

B + Z R + X

R + X R

R + X R

---------------------------

R + X 2X

R + X P + X

---------------------------

A X

 ⎯⎯→


⎯⎯→
 ⎯⎯→

 ⎯⎯→




⎯⎯→

 ⎯⎯→


 →


    (42) 

regidas por las ecuaciones [21] 

   

•
2

1 2 1 2 2 3 1

•
2

1

•

1 2 1 3 1

•

2 2 1 2 2 3 2

X = k ·X + B·Z k ·R ·X k ·R ·X.....+ k ·R ·X + A

Z = k ·X B·Z

R = B·Z k ·R ·X k R ·X

R = k ·R ·X k ·R ·X k R ·X


− − −




−

 − −

 − −

 (43) 

 Suponiendo 
• •

1Z = 0, R = 0, sumando las 
•

jR y demostrando j, 4 2 3(Y = R (k = k + k ),  

resultan 
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2•
3 1

2

4

•

1 2 3

k ·k ·X
X = k ·X·Y + + A

k

Y = k ·X k ·X·Y


−




−

   (44) 

 En el caso concreto k1 = 3, A = 0,2, k2 = 1, k3 = 1,5 (se parte, desde luego de los datos (19)), el 

SS es X0 = 1, Y0 = 2, la matriz es  

      

1,6 2

3 1,5

− 
 

−   

con T = 0,1 > 0, D = 3,8 > 0,    < 0: el SS es foro inestable. 

 Para construir la Figura 4 [2] la frontera abcdea es un recinto Poincaré–Bendixson [9,13,18], se 

parte del punto a. La línea [a,b[ es simplemente una recta Y = (3/2)(X – 1), con [ab[, p = 3/10(1 –X2) 

  0 al ser X ≥ 1 (= en a). Se prosigue  por la vertical [bc[ hasta llegar a 
•

Y = 0;  en [bc[, 

n(1,0),
• •

X 0 (= en b), p = X 0 (= en b).   Por la horizontal [cd[ se va hasta 
•

X = 0 ; en [cd[, 

•

n(0,1), Y 0,
•

p = Y 0 (= en c).  Se desciende por [de[ hasta el eje X; en [de[, 

• •

n( 1,0), X 0 (= en d), p = X 0 (=en d).−  −   Cierra el recinto el tramo [ea[ del eje X, donde 

n(0, 1), Y 0, Y 0.p
• •

−  = −   

 En virtud del teorema de Poincaré–Bendixson, existe, dentro del recinto delimitado por abcdea, 

al menos un CL de (44), en torno al SS inestable. 

 

 

Figura 4. Plano de fases de (44) 
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  M5(0, 0, 1, 0). Sean las reacciones 

     

2

2

3

3

1

k

1 2

k

2 3

k

1

k

2 2

F

1

F

2

B + X R + X

R + X R

R + X R

----------------------------

R + X 2X

R + X P + X

---------------------------

R

R

--------------------------

→


⎯⎯→
 ⎯⎯→




⎯⎯→


⎯⎯→



⎯⎯→


⎯⎯→



   (45) 

regidas por las ecuaciones [21,29] 

    

•

2 1 2 2 3 1

•

1 2 1 3 1 1

•

2 2 1 2 2 3 2 2

X = k ·R ·X k ·X·R ... + k ·X·R

R = B·X k ·X·R k ·X·R F·R

R = k ·R ·X k R ·X k ·X·R F·R

------------------------------------------------------


− −



 − − −



− − −



  (46) 

 Suponiendo 
•

1R = 0,  sumando las 
•

jR y denotando 
•

jY = R  (k4 = k2 + k3), resulta 

     

2•
3

2

4

•

3

k ·B·X
X = k ·X·Y +

k ·X +F

Y = B·X k ·X·Y F·Y


−




− −

   (47) 

que es el caso concreto (29): k2 = 1, k3 = 2 , F = 1, k1 = B = 20, presenta SS en el origen y en X0, 

Y0 = 8,284 da una matriz 

     

3,482 1

8,284 2,414

− 
 

−   

con T = 0,063 > 0, D = 2,292 >0 y ∆ < 0: ese SS es foco inestable. 

 Para construir la frontera abcdefa de un recinto Poincaré–Bendixson, se parte de a(1,0). La 

curva [ab[ es Y = ln X, con n(1/X, 1),− dando para el flujo (11)  

( )
( )

20· 2
20 2·Y

· 1 2 1

X
p

X
= − +

+ +
 

 Como [ab[ es 
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( )
20· 2·X

X· 1 2 1
Y 

+ +
 (curva 

•

X = 0) 

será 

  ( )
20 2 X

p < X· 20
1 2 ·X 1 1 2 ·X 1

 
 − +
 + + + +
 

 

 Ahora bien, en [ab[ es X ≥ 1 (= en a), luego la cantidad  

( )X· 2 1 2 1−  −  

lo cual implica que 

    
( )

20 2 40X 20(1 2)·X 20
0

1 2 X 1

+ − + −


+ +
 

 Así pues, p < 0 en [ab[. Se sigue por la vertical [bc[, desde 
• •

X = 0 a Y = 0. Se sigue por la 

vertical [bc[, desde 
•

X = 0  a 
•

Y = 0.  Allí, n(1,0),
•

X 0  (= en b), p = 
•

X 0  (= en b). La 

horizontal [cd[ llega hasta la recta X = 1; en [cd[, ( )
•

n(0,1), Y 0 = en c ,  p = ( )
•

Y 0 = en c .  

 La línea [de[ es de la forma Y = ln X + C, en ella n( 1/X,1),− y se tiene 

    
20 2

p X·( 20 2· )
(1 2) 1

Y
X

−
= + −

+ +
 

Pero en [de[ es  

     
( )

20 2·X
Y

1 2 · 1X


+ +
  (curva 

•

X = 0 ) 

luego  

    
20 2 40·X

p ( 20 )
(1 2)·X 1 (1 2)X 1

X
−

 + +
+ + + +

 

 Ahora bien, en [de[ es ( )X 1 = en d ,  luego X(√2 – 1)  <  √2) – 1, y la cantidad 

    

( )20 2 40 20 1 2 20
0

(1 2) 1

X X

X

− − + + +


+ +  

de modo que p < 0 en [de[.  Se desciende por [ef [ hasta el eje X; en [ef[, n( 1,0),−  
•

X 0  (= en e), 

p  = –
•

X 0  (=  en e).  Cierra el recinto el tramo [fa[ del eje X, donde 
•

n(0, 1), Y > 0,−  con lo que 
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p = –
•

Y < 0.  

 En virtud del teorema de Poincaré–Bendixson, existe, dentro del recinto determinado por 

abcdefa, al menos un CL de (47), en torno al SS X0 = 1, Y0 = 8,284. 

 

 Figura 5. Plano de fases de (47). 
  

 M6 (0, 0, 2, 0).Sean las reacciones 

     

1

2

2

3

3

k

1

k

1 2

k

2 3

k

1

k

2 2

1

2

2X Z + X

B + Z R + X

R + X R

R + X R

----------------------------

R + X 2X

R + X P + X

----------------------------

R F

R F

 ⎯⎯→


⎯⎯→
 ⎯⎯→

 ⎯⎯→




⎯⎯→


⎯⎯→



→
 →

    (48) 

regidas por las ecuaciones [21] 

   

•
2

1 2 1 2 2 3 1

•
2

1

•

1 2 1 3 1 1

•

2 2 1 2 2 3 2 2

X = k ·X  + B·Z k ·R ·X k ·R ·X .....+ k ·R ·X

Z = k ·X B·Z

R = B·Z k ·R ·X k R ·X FR

R = k ·R ·X k ·R ·X k R ·X FR


− − − −




−

 − − −

 − − −

 (49) 

  

 Suponiendo 
•

Z = 0,
•

1R = 0,  sumando las 
•

jR y denotando 
•

jY = R  (k4 = k2 + k3), resulta 
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3•
3 1

2

4

•
2

1 3

k ·k ·X
X = k ·X·Y + 

 k X + F

Y = k ·X k ·X·Y FY


−




− −

   (50) 

  En el caso concreto k1 = 15, k2 = 1, k3 = 1, F = 2 (cf. 29) posee un SS  en el origen y en X0 

= 1, Y0 = 2,071. Este último conduce a una matriz 

     

2,677 1

7,071 2,414

− 
 

−   

con T = 0,263 > 0, D = 0,609, ∆  < 0 ese SS es foco inestable. 

 Para construir un recinto Poincaré–Bendixson [2], se parte del punto a (1,0) [9,13,18] (véase 

la Figura 6). La línea [ab[, que llega hasta 
•

X = 0,  es Y = ln X, con n( 1/X,1),− y el flujo (11) es por 

ella 

    
( )

5 2·
p X· 5X + 2·Y

1 2 ·X + 1

X
 
 = −
 +
 

 

 

 
 Figura 6. Plano de fases de (50). 

 Como es [ab[ es Y < [5√2·X2/(1+ √2 )·(X +1)]   (curva 
•

X = 0 ) será 

    
2 2 2

p 5 ( 1)
(1 2) 1

X
X

X

+
 −

+ +
 

 Pero en [ab[ es X 1, luego X·(√2 – 1)  ≥  √2  –  1, lo cual implica 

     
2X + 2

1 0
(1 + 2)·X + 1

−   
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así p <  0 en [ab[. 

 Se sigue por la vertical [bc[ hasta 
•

Y = 0; en [bc[, n(1,0),
•

X 0  (= en b), p =
•

X 0  (= en 

b). Luego se sigue por la horizontal [cd[ hasta la recta X = 1; en [cd[, n(0,1),
•

Y 0  (= en c), p = 

•

Y 0 (= en c). La línea [de[, que llega hasta cortar de nuevo a 
•

X = 0, es de la forma Y = ln X + C; 

su vector n( 1/X,1),− y da p 

    
5 2·

p X· ( 5 2· )
(1 2) 1

X
X Y

X

−
= + −

+ +
 

Como en [de[ es Y > 5√2·X2/[(1 + √2)·X + 1]  (curva 
•

X = 0 ) 

será  

     
( )

2 2X  2
p  5X ·(1

1   2 X  1

+
 −

+ +
 

pero en [de[ es X ≤ 1, luego ( ) ( )X 2 1 2 1 ,−  −  lo cual implica  

     
( )

2 2
1 0

1 2 1

X

X

+
− 

+ +
 

así p < 0 en [de[. 

 Se desciende por la vertical [ef[ hasta el eje X; en [ef[, n( 1,0),−
•

X 0  (= en e), p = – 

•

X 0  (= en e). Cierra el recinto el tramo [fa[ del eje X, donde n(0, 1),−  
• •

Y > 0, p = Y < 0.−  

 En virtud del teorema de Poincaré–Bendixson [11], existe dentro del recinto creado por 

abcdefa, al menos con CL de (50), en torno al SS foco inestable X0 = 1, Y0 = 2,071. Por último, se 

estimó conveniente analizar algún caso con  δ = 1 [1]. 

 M7 (1, 0, 2, – k5X2). Sean las reacciones 
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1

2

4

3

3

5

k

1

k

1 2

k

2 3

k

1

k

2 2

1

2

k

2X Z + X

B + Z R + X

R + X R

R + X R

---------------------------

R + X 2X

R + X P + X

----------------------------

R F

R F

-----------------------------

2X X

 ⎯⎯→


⎯⎯→
 ⎯⎯→

 ⎯⎯→


 ⎯⎯→


⎯⎯→


 →


→



⎯⎯→

   (51) 

regidas por las ecuaciones [21] 

  

•
2 2

1 2 1 2 2 3 1 1 5

•
2

1

•

1 2 1 3 1 1

•

2 2 1 2 2 3 2 2

X = k ·X + B·Z k ·R ·X k ·R ·X .....+ k ·R ·X+ FR k X

Z = k ·X B·Z

R = B·Z k ·R ·X k R ·X FR

R = k ·R ·X k ·R ·X k R ·X FR


− − − − −




−

 − − −

 − − −

(52) 

  Suponiendo 
•

Z = 0,
•

1R = 0,  sumando las 
•

1R = 0, sumando las 
•

jR  y denotando 

•

jY = R  (k4 + k2 + k3), resulta 

     

2

3 1
2

4

2

1 3

( · )· ·
· ·

· · ·

k X F k X
X k X Y

k X F

Y k X k X Y FY

•

•

 +
= − +

+



= − −    

 En el caso concreto k2 =1, k3 = 1, k1 = 15, k5 = 12, F = 2, existe un SS en X0 = 1, Y0 = 5; la 

matriz es 

      

25
1

8

25 3

 
− 

 
−   

cuya T = 1/8 > 0, y D = 125/8 > 0, T2 – 4D < 0, de modo que dicho SS es foco inestable. 

  Para construir un recinto Poincaré–Bendixson [2], con recinto Poincaré–Bendixson, se parte 

de a(1,0) (véase la Figura 7). La curva [ab[ es Y = 2·ln X  con n(2/X, 1),−  y el flujo (11) queda: 
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15·( 2) 25
X·( 15· )

1 2

X
p X Y

X

+
= − − +

+
 

pero en [ab[, Y < [15·X·(X + 2) /2(X + 1)] – (25X/4) (curva 
•

X = 0 ), luego 

 

   

( )15 25( 2) 25 25
15 ·

1 2 2( 1) 4

X XX X
p X X

X X

+ +
 − − + − 

+ +   
 

 
Figura 7. Plano de fases de (53). 

  

 Ahora bien, al ser en [ab[, X ≥ 1, también es X2 + 3X – 14 ≥ 0, lo que equivale a decir que 

la cantidad 

   

( ) ( )15· X + 2 15 X 225 25X
( 15X ) 0

(X + 1) 2 2(X 1) 4

X +
− − + − 

+
 

luego p ≤ 0 en [ab[. 

 Se continua en la vertical [bc[ hasta llegar a 
•

Y = 0;  en [bc[, 
•

n(1,0), X 0 (= en b), p = 

•

X 0  (= en b). La horizontal [cd[ llega hasta la recta X = 1; en [cd[, n(0,1), ( )
•

Y 0 = en c ,  p = 

•

Y 0  (= en c). 

 La curva [de[, hasta volver a 
•

X = 0 , es de la forma Y = 2·ln X + C, con n(2/X, 1);−  se 

obtiene para el flujo 

    

( )15· X + 2 25
·( 15X )

X + 1 2
p X Y

−
= + + −
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pero es [de[, Y > [15 X(X  + 2)/2(X + 1)] – 25X/4 (curva 
•

X = 0 ), por lo tanto será 

   

15(X 2) 25 15X(X 2) 25X
p < X 15X

X 1 2 2(X 1) 4

 − + +
+ + − + 

+ +   

 Ahora bien al ser en [de[, X 1, también es  11Y2  +  3Y – 14  ≤  0, lo que significa que la 

cantidad 

   

15(X 2) 25 15X(X 2) 25X
15X 0

X 1 2 2(X 1) 4

− + +
+ + − + 

+ +
 

luego p < 0 es [de[.  Se desciende en vertical [ef[ hasta el eje X: en [e f[, 
•

n( 1,0), X 0−   (= en e), p 

= –
•

X 0  (= en e), p = – 
•

X 0  (= en e).  Cierra el recinto el tramo [f a[ del eje X, donde 

• •

n(0, 1), Y > 0, p = Y < 0.− −  

 En virtud, pues, del teorema de Poincaré–Bendixson, existe, dentro del recinto delimitado 

por la frontera abcdefa, al menos un CL de (53), que rodea al SS foco inestable X0 = 1, Y0 = 5. 

 

RESUMEN Y CONCLUSIONES 

 Se ha estudiado una nueva gama de osciladores químicos para reacciones de polimerización 

[2]. Ella tiene en común con la p presentada en el artículo anterior, la irreversible característica [1] 

de que la terminación de R1 debe originar polímeros de longitud de cadena 1, esto es, monómero X.  

También comparten ambas familias de osciladores la hipótesis de hacer 
•

1R = 0,  lo cual puede 

considerarse algo más arbitrario y discutible, pero que guarda relación con la designación [2] de 

variables X y 
•

jR = Y,  en el concepto propuesto de “polimerización oscilante”. Esta hipótesis, 

combinada con la anterior idea común, conduce a términos de la forma X/(k4X + F), (afin por cierto 

a la de Michaelis–Menten1 en cinética enzimática [30]), cuya importancia es fundamental en la 

consecución de comportamiento de ciclo límite (CL). 

 La principal característica propia de los mecanismos propuestos en este artículo se refiere a 

la forma de la terminación, por transferencia al monómero [1]. Ciertamente este tipo de terminación 

presta carácter de autocatálisis [29] a la irreversible etapa R1 + X →  2X. 

 
1 Michaelis-Menten no era una persona sino dos: Leonor Michaelis y Maud Leonora Menten. En la época en la que se 

desarrolla esta historia, finales del siglo XIX y principios del siglo XX, no era nada propicia para que una mujer y un 

hombre de raza negra le fueran reconocidos sus méritps. La ecuación de Michaelis-Menten es capaz de describir el cambio 

sufrido por la velocidad de una reacción catalizada por una enzima al variar la concentración del sustrato. 
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 En general dicha terminación ha de ir combinada con eliminación por flujo [29], Rj 
F⎯⎯→ , 

si bien, en algún modelo (M4), ha sido posible hacer F = 0, prescindiendo de dichos términos, y en 

otro modelo (M7) dichas etapas se han podido reconvertir a una terminación alternativa [1, 26] en 

competición con la otra F F

1 j j(R X, R P (j+1))⎯⎯→ ⎯⎯→ . 

 Es posible obtener osciladores para ε = 1, pero requieren (M1) añadir autocatálisis adicional 

[2,29] en el historial H(X). El resto de los osciladores obtenido lo han sido para ε = 0, lo cual 

introduce una dicotomía de contribuciones de la iniciación a 
•

X  y a 
•

Y ,  cuya discutibilidad se ha 

tratado de atenuar formulándola de la manera más simple y plausible que se ha podido (X cataliza la 

producción de R1 a partir del precursor B, en los casos n = 1; en los casos n = 2, la activación se da 

en dos pasos, a través de una especie intermedia Z). 

 En estos casos ε = 0 se obtienen osciladores para historiales enormemente H(X) 

enormemente sencillos, incluyendo el H = 0; o en todo caso el flujo de entrada de monómero (H = 

A) [29], hipótesis muy plausible para una biopolimerización en una célula viva, sistema abierto 

[17,30]. 

 Cuatro de los siete modelos obtenidos son “degenerados” (es decir, para X = 0, 
•

X =0).  Esta 

circunstancia puede incluso aumentar su plausibilidad (si no hay monómero, no hay 

polimerización), y no es óbice para efectuar la prueba Poincaré–Bendixson. 

 No se ha explorado, en los casos posibles hallados, el espacio completo de los parámetros 

[5], aunque si se ofrecen generalizaciones de algunas imposibilidades (por ejemplo, las iniciaciones 

de orden cero, algunas exclusiones en los casos n = 1, ….), confinándose desde luego el interés del 

diseño sistemático de modelos por medio de la técnica aquí usada de bloques cinético–formales [2] 

constituyentes a términos de las ecuaciones diferenciales. 

 Para el análisis de éstas últimas, se continúan empleando las técnicas de plano de fases [17], 

centrados sobre todo en los teoremas de Lyapunov [22] y de Poincaré–Bendixson [12]. 
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