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1. INTRODUCCIÓN 

 
 En los modelos teóricos para las oscilaciones químicas suelen proponerse dinámicas 

fuertemente no-lineales, buscando comportamiento de ciclo límite. En este trabajo se adopta un 

enfoque diferente, en que añadiendo una sencilla retroacción a las etapas de una polimerización, se 

hace posible la instauración de oscilaciones sostenidas harmónicas en un sistema regido por 

ecuaciones prácticamente lineales. 

2. MECANISMO 

 
 La iniciación ocurre con una velocidad Vo(M), que dependería de la concentración M del 
monómero: 
     → R1  Vo(M)       (1.1) 

 Las etapas de propagación de las cadenas pueden describirse mediante: 

  Rj + M   pk⎯⎯→   Rj+1 (j = 1, 2,...., ∞)     (1.2) 

 La terminación ocurriría por transferencia de reactividad a un tercer cuerpo S (por ejemplo, 

disolvente): 

  Rj + S   terk⎯⎯→   (j = 1,2,...., ∞)      (1.3) 

 Al alcanzar cada vez más longitud, las cadenas Rj se pliegan sobre sí mismas. Precisamente 

esta estructura secundaria (estereoquímica) está en el fundamento de la actividad catalítica de 

algunas macromoléculas (enzimas), que así pueden actuar localmente sobre la geometría para un 

grado de polimerización n: Rn actúa sobre el sustrato H: 

 

  Rn  +  H  1k⎯⎯→   Rn  +  V       (1.4) 
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 Para completar el lazo de retroacción, el producto V desactiva el primer propagador R1: 

  V  +  R1   2k⎯⎯→         (1.5) 

3. ANÁLISIS 
 

 En este modelo la concentración M del monómero se considerará constante (por exceso, por 

ejemplo, al inicio de la polimerización). Asimismo se tomarán S y H constantes. Denotando pues: 

 o p ter 1 j
j=n+1

V (M) = A = cte; k M = p; k .S = k; k H = h; p + k = c; Y = R
∞

∑   (2) 

 Las ecuaciones cinéticas para el mecanismo (1) se formularán: 

   

•

1 1 2 1
•

j j-1 j

•

n
•

n 2 1

R = A - cR - k VR

R = pR - cR (j = 2,3,.....n)

Y = pR - kY

V = hR - k VR

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

    (3) 

 Si se admite que 
•

V = 0  siempre, resultan:  

   

•

1 1 n

•

j j-1 j

•

n

R = A - cR - hR

R = pR - cR (j = 2,3,.....n)

Y = pR - kY

⎧
⎪
⎪⎪
⎨
⎪
⎪
⎪⎩

    (3´) 

 Resolviendo 
• • •

1 jR = 0, R = 0 (j =  2,3,....., n), Y = 0, se obtienen los valores de estado 

estacionario: 

   

( ) ( ) ( )

( )

( )

n-12

n o n-1 n-2 12o o o

1 n-1o

n o
o
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⎧
⎪

⎛ ⎞⎪ ⎜ ⎟⎪ ⎝ ⎠
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⎪
⎨
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⎪
⎪
⎪⎩

  (4) 

 En términos de perturbaciones de estado estacionario, formuladas como: 
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   j j j o or = R - (R ) (j = 1,2,...., n); y = Y - Y    (5) 

 Se expresan 

   

•

1 1 n
•

j j-1 j

•

n

r = -cr - hr

r = pr - cr

j = pr - ky

⎧
⎪
⎪
⎨
⎪
⎪
⎩

       (6) 

 Obsérvese que las ecuaciones diferenciales (6), o las (3), son formalmente lineales. No 

obstante, bajo ciertas condiciones, son posibles soluciones periódicas del tipo: 

   

1 1

2 2

( ( 1) )
( ( 2) )

...........................................

( )
n n

n

r b sen t n
r b sen t n

r b sen t
y y sen t

ω ϕ
ω ϕ

ω
ω λ

= + −⎧
⎪ = + −⎪⎪
⎨
⎪ =⎪

= −⎪⎩

      (7) 

 Soluciones que pueden denominarse “oscilaciones harmónicas en una polimerización”. 

Obviamente, una primera condición, para evitar Rj < 0 (j = 1, 2, ....., n), Y < 0, es: 

   0( ) ( 1, 2,...., );j j n ob R j n y Y≤ = ≤     (8) 

 Insertando las ecuaciones (7) en las (6), se deducen las condiciones: 

      tg
c
ωϕ =      (9) 

    1( )( cos ) 2,3,...... )j j
pb b j n
c

ϕ−= =     (10) 

     ( 1)tg n
c
ωϕ− = −      (11) 

 Combinando la ecuación (11) con la (9), se llega a: 

      0tg nϕ =      (12) 

es decir, 

    z= 180
n

⎛ ⎞
⎜ ⎟
⎝ ⎠

ϕ   (z = número entero)   (13) 

    
12

cos
cos ( 1)

nh pc
c n c

ω ϕ
ϕ

−
⎛ ⎞= − − ⎜ ⎟− ⎝ ⎠

   (14) 
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 Insertando la ecuación (7) para y, en las ecuaciones (6), se obtiene: 

     ny pb sen t kyω
•

= −      (15) 

que integrada, conduce a: 

    ( )
2 2

cosnpb k sen t t
y

k
ω ω ω

ω
−

=
+

   (16) 

es decir, comparando con y = yn.sen (ωt – l), se deduce: 

 

 
2 2 2 2 2 2

; ; cosn
n

pb ky sen
k k k

ωλ λ
ω ω ω

= = =
+ + +

  (17) 

 

 La periodicidad en y(t) se puede expresar como “oscilaciones impulsadas por n-mero”. 

 Las soluciones periódicas se instauran a partir de unas ciertas condiciones iniciales: para t =0 

de la ecuación (7) resultan: 

 

( )

( ) ( )

( )

1 10

2 2 2 20 0

0

( 1)

( 2) ( )

...........................................
0

t

n
nt t

n t

r b sen n
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k

r

ϕ
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ω

=

= =

=

= −⎧
⎪
⎪ = − = − = −⎪ +⎨
⎪
⎪
⎪ =⎩

 (18) 

 

4. DISCUSIÓN 

 A la hora de seleccionar modelos concretos acordes al mecanismo analizado, se estudiaron 

las posibilidades para el desplazamiento de fase ϕ. 

 En primer lugar, hay dos series de valores que deben evitarse: 

  a) ϕ = 0º, 180º, 360º, 540º,....., cuya tg ϕ = 0, lo que por la ecuación (9) haría ω = 0 y 

periodo (T = 2π/ω) infinito. 

  b) ϕ = 90º, 270º, 450º,....., cuya tg ϕ = ±ϑ, lo que por la ecuación (9) haría ω = ± ∞ 

(periodo nulo). 

 Así pues, según la ecuación (13), los posibles cocientes (z/n) están limitados. Por una parte, 

no puede ser n = 1, pues en tal caso ϕ = z.180º, y todos los valores de z dan la serie a). Por otra parte 
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tampoco es viable n = 2, pues en tal caso ϕ = (z/2).180º: los valores de z pares conducen a la serie 

a), y los valores de z impares a la serie b). Naturalmente, otras combinaciones equivalentes a estas 

(por ejemplo, z = 3, n =3; o z = 2, n = 4.....) quedan igualmente descartadas. En consecuencia, como 

mínimo n ha de valer 3: “el modelo mínimo es el impulsado por trímero”. 

 Dado que c > 0, si se desea ω > 0 se tendrá tg ϕ > 0. Es decir, ϕ estará en el primer, o bien en 

el tercer cuadrante. Pero en esta última variante es cos ϕ < 0, lo que en la ecuación (14) obliga a  

discernir, respecto al signo de (cos ϕ)n-1, entre subcasos con n impar y con n par. Para evitar esta 

complicación se prefirió la variante de “ϕ en el primer cuadrante”, con tg ϕ > 0 y cos ϕ > 0. 

 Ahora bien, dado que c > 0 y h > 0, si cos ϕ > 0, la condición de la ecuación (14) sólo puede 

cumplirse si cos (n - 1)ϕ  < 0. Según la ecuación (11), tg (n-1)ϕ  < 0.   Ello sitúa necesariamente a 

(n-1)ϕ en el segundo cuadrante. 

 Dentro de estos condicionamientos, por supuesto, habrá “clases de modelos equivalentes”, 

las correspondientes a cada fracción racional z/n (por ejemplo, (z/n) = 1/3  = 2/6 = 3/9 = 4/12 = 5/15 

= ....). 

5. MODELO MÍNIMO CANÓNICO. 

 Seguidamente, considerando que como mínimo será n = 3, lo cual para z = 1 da ϕ = 60º, se 

concretará un modelo con éste valor de ϕ. Para obtener  ϕ = (z/n)180º = 60º, la serie de fracciones 

será (z/n) = 1/3 = 2/6 = 3/9 = 4/12 = 5/15 = 6/18 = ....  Sin embargo, las correspondientes a 

denominadores pares deben excluirse, porque conducen a valores de (n-1) ϕ en el cuarto cuadrante. 

Por ejemplo: 

    
6, ( 1) 5.60 300º
12, ( 1) 11.60 660º 300º
18, ( 1) 17.60 1020º 300º

n n
n n
n n

ϕ
ϕ
ϕ

= − = =⎧
⎪ = − = = →⎨
⎪ = − = = →⎩

 

 Solo pueden admitirse los valores impares n = 3, n = 9, n = 15, .... de los denominadores, y 

como indicadores del grado de polimerización crítico del impulsor/retroactor Rn.  

 Concretándose al representante canónico irreducible n = 3, z = 1, con ello resultan: 
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( ) ( )

3

1

3
3 1

32 2 2 2 2 2

60º ;( 1) 120º ; 3 ; 3 ; 1, 2,3,....
2

8 ;
3 4 3

j j
pn tg c b b j
c

pb p bch y
p c k c c k

ϕ ϕ ϕ ω −

⎧ ⎛ ⎞= − = = = = =⎜ ⎟⎪ ⎝ ⎠⎪
⎨
⎪ = = =
⎪ + +⎩

 (19) 

y asimismo 

  ( ) ( ) ( )
2 3

1 2 3 o2 3 30 0 0

A pA p A p AR = ; R = ; R = ; Y =
9c 9c 9c 9c k

   (20) 

 Si se elige, para el cumplimiento de la ecuación (8), b1 < (A/9c), al ser b2 = pb1/2c, b3 = 

p2b1/4c2 esto asegura también b2 < (R2)0, b3 < (R3)0. Al ser c > 0, también está asegurado y3 < Yo. 

 Las soluciones explícitas son: 

 

    

( )
( )

1 1

1
2 2

22
1

3 3 2

3 120º
9

3 60º
9 2

3
9 4

AR b sen c t
c

pbpAR sen c t
c c

p bp AR sen c t
c c

⎧ = + +⎪
⎪
⎪ = + +⎨
⎪
⎪

= +⎪⎩

    (21) 

 

  Además, por la ecuación (17), ( )2 23 / 3sen c c kλ = + . Dado que c ≥ k ≥ 0, 

60º≤λ≤ 90º: los casos límite son p = 0, c = k, λ = 60º (propagación mucho más lenta que la 

terminación); y k = 0, p = c, λ = 90º (terminación mucho más lenta que la propagación). Una 

situación intermedia podría ser p = k, c = 2p; entonces 12 /13sen λ = , 1/ 13cos λ = , con lo que 

λ = 73,898º; la solución explícita es: 

    ( )1 2 3 73,898º
72 16 13

bAY sen t
p

= + −    (22) 

 Se tienen “oscilaciones impulsadas por trímero”. 

 

6. CONCLUSIONES 

 Aunque las ecuaciones cinéticas para los propagadores de una polimerización elongada paso 

a paso puedan ser aproximadamente lineales (en gran exceso de monómero y disolvente), si alguno 

de dichos propagadores (Rn) puede ejercer inhibición indirecta sobre el primero de ellos, pueden 
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presentarse perturbaciones periódicas puramente sinusoidales. Con desplazamientos de fase 

sucesivos del estado estacionario de todos los propagadores y de condiciones aceptables para los 

valores del desplazamiento de fase, se explicita un modelo mínimo de oscilaciones harmónicas 

impulsadas por trímero. 
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