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1. INTRODUCCION

En los modelos tedricos para las oscilaciones quimicas suelen proponerse dinamicas
fuertemente no-lineales, buscando comportamiento de ciclo limite. En este trabajo se adopta un
enfoque diferente, en que afiadiendo una sencilla retroaccion a las etapas de una polimerizacion, se
hace posible la instauracién de oscilaciones sostenidas harmodnicas en un sistema regido por
ecuaciones practicamente lineales.

2. MECANISMO

La iniciacion ocurre con una velocidad V,(M), que dependeria de la concentracion M del
monomero:
- Ry V(M) (1.1)

Las etapas de propagacion de las cadenas pueden describirse mediante:
k .
Ri+M —— Rju (=1,2,...,0) (1.2)
La terminacion ocurriria por transferencia de reactividad a un tercer cuerpo S (por ejemplo,
disolvente):

Rj+S e, (G=12....., ®) (1.3)

Al alcanzar cada vez mas longitud, las cadenas R; se pliegan sobre si mismas. Precisamente
esta estructura secundaria (estereoquimica) estd en el fundamento de la actividad catalitica de
algunas macromoléculas (enzimas), que asi pueden actuar localmente sobre la geometria para un

grado de polimerizacion n: R, actia sobre el sustrato H:

R, +H —%> R, +V (1.4)
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Para completar el lazo de retroaccion, el producto V desactiva el primer propagador R;:

V+R —f (1.5)
3. ANALISIS

En este modelo la concentracion M del monomero se considerara constante (por exceso, por

ejemplo, al inicio de la polimerizacion). Asimismo se tomaran S y H constantes. Denotando pues:

V,(M)=A=cte; k,M=p; k., S=kkH=h;p+tk=c; Y= R, ()

j=n+1

Las ecuaciones cinéticas para el mecanismo (1) se formularan:

R, = A -cR, - k,VR,
R =pR,, - cR. i=23,...n
. j p j-1 ] (] ) (3)
Y =pR_ - kY
V=hR_ -k,VR,
Si se admite que V = 0 siempre, resultan:
R, = A-cR, - IR,
R;=pR,, - cR, G=23,..n) 39
Y = pR, - kY

estacionario:
p pz p n-1
R0, = 2(R,0), = B (R,.), = o (EJ (R),
A
(Rl)o = n-1 (4)
c+ h(pj
c
YO — p(}in )0
k

En términos de perturbaciones de estado estacionario, formuladas como:
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r, =R, -(R)), G=12,...n); y=Y-Y, (5)
Se expresan
r.] = -cr, - hr,

I, = pry, - cr, (6)

J

j=pr, - ky

Obsérvese que las ecuaciones diferenciales (6), o las (3), son formalmente lineales. No
obstante, bajo ciertas condiciones, son posibles soluciones periddicas del tipo:
r=Db sen(at + (N-1)p)
r, =b,sen(at + (n-2)p)
........................................... (7)

r =b, senawt

y=y,sen(aot — 1)
Soluciones que pueden denominarse “oscilaciones harmoénicas en una polimerizacion”.
Obviamente, una primera condicion, para evitar R; <0 (=1, 2, .....,n), Y <0, es:

b, <(R), (j=L2.n) y, <Y, (8)

Insertando las ecuaciones (7) en las (6), se deducen las condiciones:

@
tgp =— )
C
by = (b, (Eeosp) | =2.3n) (10)
@
tg(n—l)go:—E (11)
Combinando la ecuacion (11) con la (9), se llega a:
tgng = 0 (12)
es decir,
Q= (EJISO (z = niimero entero) (13)
n
5 n-1
© __¢c- #(Bcos (pj (14)
c cos(h—De\ c
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Insertando la ecuacion (7) para y, en las ecuaciones (6), se obtiene:
y = pb, sen ot — ky (15)

que integrada, conduce a:

pb, (k sen ot — wcos wt)

= 16
y @ + k? (16)

es decir, comparando con y = yn.sen (ot — 1), se deduce:
pbﬂ sen A = __® . cos A = —k (17)

La periodicidad en y(t) se puede expresar como “oscilaciones impulsadas por n-mero”.
Las soluciones periodicas se instauran a partir de unas ciertas condiciones iniciales: para t =0

de la ecuacion (7) resultan:

()., =bsen(n-Dgp
pb,®
(r,)_, =b,sen(n-2)p (¥)_, = Yasen(=4) = - o a8)
(1), =0
4. DISCUSION

A la hora de seleccionar modelos concretos acordes al mecanismo analizado, se estudiaron
las posibilidades para el desplazamiento de fase ¢.
En primer lugar, hay dos series de valores que deben evitarse:
a) @ =0°, 180° 360°, 540°,....., cuya tg ¢ = 0, lo que por la ecuacion (9) hariaw =0y
periodo (T = 2n/®) infinito.
b) ¢ =90°, 270°, 450°,....., cuya tg @ = £3, lo que por la ecuacion (9) haria ® =+ o
(periodo nulo).
Asi pues, seglin la ecuacion (13), los posibles cocientes (z/n) estan limitados. Por una parte,

no puede ser n = 1, pues en tal caso ¢ = z.180°, y todos los valores de z dan la serie a). Por otra parte
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tampoco es viable n = 2, pues en tal caso ¢ = (z/2).180° los valores de z pares conducen a la serie
a), y los valores de z impares a la serie b). Naturalmente, otras combinaciones equivalentes a estas
(por ejemplo, z=3,n =3; 0 z= 2, n = 4.....) quedan igualmente descartadas. En consecuencia, como
minimo n ha de valer 3: “el modelo minimo es el impulsado por trimero”.

Dado que ¢ > 0, si se desea ® > 0 se tendra tg ¢ > 0. Es decir, ¢ estard en el primer, o bien en
el tercer cuadrante. Pero en esta ultima variante es cos ¢ <0, lo que en la ecuacion (14) obliga a
discernir, respecto al signo de (cos @)™, entre subcasos con n impar y con n par. Para evitar esta
complicacion se prefirio la variante de “¢@ en el primer cuadrante”, contg @ >0y cos ¢ > 0.

Ahora bien, dado que ¢ > 0y h> 0, si cos ¢ > 0, la condicion de la ecuacion (14) sélo puede
cumplirse si cos (n - 1)¢ < 0. Seguin la ecuacion (11), tg (n-1)¢ < 0. Ello sitia necesariamente a
(n-1)¢ en el segundo cuadrante.

Dentro de estos condicionamientos, por supuesto, habra “clases de modelos equivalentes”,
las correspondientes a cada fraccion racional z/n (por ejemplo, (z/n) = 1/3 =2/6 =3/9 =4/12 =5/15
= ...

5. MODELO MINIMO CANONICO.

Seguidamente, considerando que como minimo serd n = 3, lo cual para z =1 da ¢ = 60°, se
concretara un modelo con éste valor de . Para obtener ¢ = (z/n)180° = 60°, la serie de fracciones
sera (z/n) = 1/3 = 2/6 = 3/9 = 4/12 = 5/15 = 6/18 = .... Sin embargo, las correspondientes a
denominadores pares deben excluirse, porque conducen a valores de (n-1) ¢ en el cuarto cuadrante.
Por ejemplo:

n==6,(N-1)p =5.60 =300°
n=12,(n-1)¢ =11.60 = 660° — 300°
n=18, (n-1)¢p =17.60 =1020° — 300°

Solo pueden admitirse los valores imparesn=3,n=9,n =15, .... de los denominadores, y
como indicadores del grado de polimerizacion critico del impulsor/retroactor R,.

Concretandose al representante candnico irreducible n =3, z = 1, con ello resultan:
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P=60°(n-1)p = 120%tgp = V3;0 =3 ; b, = (ﬁj(bjl) (j=123,...)

2c o
ho8¢ ., P ph ()
PP Bk 43 + K
y asimismo
_A _PA _PA , _PpA
(Rl)o—ga(Rz)o—ga(Rs)O—@»Yo—%gk (20)

Si se elige, para el cumplimiento de la ecuacion (8), by < (A/9c), al ser b, = pbi/2¢c, by =
p2b1/4c2 esto asegura también b, < (Ry)o, b3 < (R3)o. Al ser ¢ > 0, también esta asegurado y; < Y.

Las soluciones explicitas son:

A o
R = o b, sen(c\/gt +120 )
_ PA | pb 0
R, —w+2—csen(c\/§t+60 ) (21)
pP’A . p’b
= + sen c+/3t
S Te e Tog V3

Ademés, por la ecuacion (17), sen A = C\/g/(\BC2 + kz). Dado que ¢ > k > 0,

60°<A< 90°: los casos limite son p = 0, ¢ = k, A = 60° (propagacion mucho mas lenta que la
terminacion); y k = 0, p = ¢, A = 90° (terminacion mucho mas lenta que la propagacion). Una
situacion intermedia podria ser p =k, ¢ = 2p; entonces Sen A = J12/13, cos A =1/4/13, con lo que
A =73,898°; la solucion explicita es:

_ A + bl
72p 16413

Se tienen “oscilaciones impulsadas por trimero”.

sen(2\/§t - 73,898") (22)

6. CONCLUSIONES

Aunque las ecuaciones cinéticas para los propagadores de una polimerizacion elongada paso
a paso puedan ser aproximadamente lineales (en gran exceso de mondmero y disolvente), si alguno

de dichos propagadores (R;) puede ejercer inhibicion indirecta sobre el primero de ellos, pueden
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presentarse perturbaciones peridodicas puramente sinusoidales. Con desplazamientos de fase
sucesivos del estado estacionario de todos los propagadores y de condiciones aceptables para los
valores del desplazamiento de fase, se explicita un modelo minimo de oscilaciones harmodnicas

impulsadas por trimero.
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