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1. INTRODUCCIÓN 

 
 A diferencia de otros conocidos ejemplos experimentales de oscilaciones químicas [1-3], 

las reacciones de polimerización no poseen mecanismos redox, por lo que han sido escasos los 

intentos de adaptar modelos matemáticos de ciclo límite (CL) a dichas reacciones [4]. 

 Con todo, la propagación y crecimiento de las cadenas de polímero por vía radical no deja 

de ofrecer alguna posibilidad a la autocatálisis, característica ésta que suele juzgarse necesaria 

para obtener dinámica de ciclo límite [5-7]. 

 En este trabajo se explora una de esas posibilidades, insertando una parte del mecanismo 

de polimerización en el conocido modelo Brusselator que, como se sabe, es susceptible de 

generar inestabilidades químicas tanto en el aspecto temporal como en el espacial. 

 

2. BREVE REPASO DEL MARCO TEÓRICO: EL BRUSSELATOR [8-11]. 

 
 Este modelo fue propuesto por la escuela belga de Prigogine [12], Lefever y Nicolis [13]. 

Matemáticamente, su dinámica viene dada por las ecuaciones diferenciales [13]: 

    

2
1 2 3 4

2
2 3

X k A k X Y k BX k X

Y k X Y k BX

•

•

= + − −

= − +
           (1) 

 O bien, con las notaciones [14]: 

  32 2 1 2
4

4 4 4 4 4

Bkk k Ak kk t x X y Y a b
k k k k k

Θ = = = = =    (2) 
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2

2

dx a x y bx x
d
dy x y bx
d

= + − −
Θ

= − +
Θ

             (3) 

 
 El estado estacionario (SS) ocurre en xo = a, yo = b/a. Linealizando la ecuación (3) en 

torno del estado estacionario, la traza de la matriz del sistema variacional [15] es Tro = b –a2 - 1 y 

el determinante correspondiente vale Deto = a2 > 0 siempre. Si b > 1 + a2, el estado estacionario 

es inestable [16]. 

 Este estado estacionario inestable (véase la Figura 1) se puede rodear de la línea cerrada 

QUVWNQ [4]. Se parte del punto Q, intersección de la nuliclina 0x
•

= con el eje x, se procede 

en vertical QU hasta alcanzar la nuliclina 0y
•

= , se continua en la horizontal UV hasta la recta x 

= yo = a. La recta VW pasa  por V y tiene pendiente -1, se prolonga hasta cortar a 0x
•

= . Se 

desciende en vertical WN hasta el eje x; el tramo WQ de dicho eje cierra el recinto. Si se calcula 

el flujo del campo de direcciones de (3) a lo largo de la frontera QUVWNQ, se tendrá: 

 En ]QU], ( 1,0), 0n x
•

− >
r

, luego el flujo vale ( , ) 0n x y x
• • •

= − <
r

. 

 En ]UV], (0,1), 0n y
•

<
r

, el flujo vale ( , ) 0n x y y
• • •

= <
r

. 

 En ]VW], (1,1)n
r

 , el flujo es ( , ) 0,n x y a x
• •

= − <
r

 ya que en este segmento x > xo = a 

 En ]WN], (1,0), 0,n x
•

<
r

 el flujo vale ( , ) 0.n x y x
• • •

= <
r

 

 En ]NQ], (0, 1), 0,n y
•

− >
r

 el flujo ( , ) 0n x y y
• • •

= − <
r

 

 Por el teorema de Poincaré-Bendixson (PB) [17], si el estado estacionario es inestable 

existe al menos un ciclo límite de (3), rodeando al sistema estacionario inestable, dentro del 

recinto cerrado por QUVWNQ. Las variables (x,y), o las {X,Y} ejecutarían oscilaciones 

sostenidas. 

 Si se añaden términos de difusión, las ecuaciones se modificarían de la forma: 
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2
2

2

2
2

2

x

y

x xa x y bx x D
r

y yx y bx D
r

⎛ ⎞∂ ∂
= + − − + ⎜ ⎟∂Θ ∂⎝ ⎠

⎛ ⎞∂ ∂
= − + + ⎜ ⎟∂Θ ∂⎝ ⎠

    (4) 

 

 
Figura 1. Plano de fases del sistema (3). 

 
 El estado estacionario homogéneo (SSH) es el mismo, xo =, yo = b/a. Para un número de 

ondas n = mπ/L, donde L es la longitud del sistema y m puede adoptar los valores 0,1,2,3,...., se 

tienen 

 Trn = Tro –n2(Dx + Dy)          y     Detn = Deto – n2[(b-1)Dy – a2Dx] + DxDyn4     (5) 

 

 Si Tro < 0  (es decir, b < 1 + a2), el estado estacionario es estable, y la pérdida de su 

estabilidad por hacerse Trn > 0 no es posible. Pero sí es posible la desestabilización por hacerse 

Detn < 0 [7]. Ello puede ocurrir en un intervalo p1 < p < p2, con p = n2, si el discriminante 

   ( ) 22 21 4 0y x x yb D a D a D D⎡ ⎤Δ = − − − >⎣ ⎦          (6) 

 El cumplimiento de esta condición está asegurado si Dx → 0. Como tanto p1 como p2 son 

ambas positivas, la suma de las raíces 

( ) 2

1 2

1
0y x

x y

b D a D
p p

D D
− −

+ = >  

lo que sucede si 
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2

1
x y

bD D
a
−⎛ ⎞< ⎜ ⎟

⎝ ⎠
 

 La desestabilización del estado estacionario homogéneo conducirá a la instauración de un 

ordenamiento espacialmente periódico del sistema, una estructura disipativa, es decir “orden 

emergente a partir de fluctuaciones” [12,13]. 

 

3. MECANISMOS QUÍMICOS 
 
 El marco teórico repasado en la sección precedente es conocido, por lo que a continuación 

se presentarán algunos esquemas cinéticos, referidos a reacciones de polimerización, que al estar 

gobernadas por ecuaciones cinéticas isomorfas a (1), pueden exhibir comportamiento de ciclo 

límite (oscilaciones sostenidas en las concentraciones) o bien, cuando se los acopla con difusión y 

pasan a estar gobernadas por ecuaciones del tipo (4), puede originar estructuras disipativas 

espaciales. 

 3.1. Inestabilidad impulsada por dímero. Se trata de una variante muy simple. Las 

variables oscilatorias son 1X R•= , concentración del primer radical propagador, e Y, un isómero 

de dicho radical [18,19]. Por ejemplo, en una polimerización clásica iniciada con un iniciador I 

(puede ser un peróxido orgánico), se forma 1R•  según 

     
1

2I I
I M R

•

• •

⇔

+ →
     (7) 

donde M representa al monómero. Por ejemplo, para el monómero vinílico acrilonitrilo 

(CH2=CHCN) [20], sería 
•

•
1 2R = -[C H CH ICN]-  y el isómero Y postulado podría ser 

•

2Y = I -CH C HCN- ). En este modelo se considerará constante la concentración del monómero, 

por ejemplo debido a que se encuentre en gran exceso, de modo que finalmente la iniciación se 

representará por: 

     oA X→       (8a) 
 La propagación de la polimerización se esquematiza: 

     2X p R•⎯⎯→       (8b) 
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2 3

3 4

....................

....................

....................

p

p

R R

R R

• •

• •

⎯⎯→

⎯⎯→

      (8c) 

donde se ha englobado en la constante p la concentración de monómero, quien interviene en 

todos los primeros miembros de las etapas de propagación. 

 La isomerización directa de X en Y es: 

     X Yβ⎯⎯→       (8d) 

la isomerización inversa de Y en X será catalizada por el dímero D, el cual puede formarse en 

una terminación 

     2
k

X D
ω

↔       (8e) 

que se supone reversible [11,21], y posteriormente, en efecto [22],  
 
    D Y D Xλ+ ⎯⎯→ +       (8f) 
 Otras terminaciones serán no reversibles, dando polímero Pi+j 
  

   ( 1, 1)i j i jR R P i jω• •
++ ⎯⎯→ ≠ ≠     (8g) 

 Denotando 
2

iR R
∞

•= ∑ , las ecuaciones diferenciales para el mecanismo (8) son: 

   

2

2

2 2

2 2oX A pX X X DY kD

Y X DY

D X kD

R pX R pX R

ω β λ

β λ

ω

ω ω

•

•

•

•

= − − − + +

= −

= −

= − = −

   (9) 

 Suponiendo 0D
•

= , se transforman en 

   

2

2

oX A pX X X Y
k

Y X X Y
k

λωβ

λωβ

•

•

= − − +

= −
     (10) 

 
las cuales son de la forma (1) si se denotan Ao = k1A, p = k, β = k3B, λω/k = k2. 
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 En el caso sin difusión, para 2 2( / )( / )op k A pβ λω> +  habrá oscilaciones de ciclo límite 

en X y en Y. A la vista de la ecuación (9) para R
•

 se tiene que 2R pX Rω
•

= − . Es fácil intuir que 

las oscilaciones de X forzarán las del resto de propagadores R. Si se linealiza esta ecuación [15], 

introduciendo las perturbaciones 

   o oX X r R Rξ = − = −      (11) 

con / /o o oR A pXω ω= = , suponiendo condiciones ligeramente supercríticas 

( ) ( )2 2/ /op k A pβ λω≥ + , será osen Htξ ξ= , y la ecuación linealizada 

   2 2o o or p R r p sen Ht R rξ ω ξ ω
•

= − = −     (12) 
 
admite para r la solución periódica [15] 

    0
2 2 2

0

2 cos
4o

R sen Ht H Htr p
H R

ωξ
ω

⎛ ⎞−
= ⎜ ⎟+⎝ ⎠

    (13) 

esto es 

    0
0 0 2 2 2

0

2 .cos
4

R sen Ht H HtR R p
H R

ωξ
ω

⎛ ⎞−
= + ⎜ ⎟+⎝ ⎠

   (14) 

 
 Así, las oscilaciones en 1R• , debidas en última instancia al término autocatalítico ~ X2Y 

procedente de la etapa (8f) catalizada por el dímero, impulsan las oscilaciones de los restantes 

propagadores R: “se transmiten” a toda la propagación de la polimerización. Si se acoplan 

procesos de difusión, podrán obtenerse estructuraciones espaciales. Seguidamente se expone una 

variante del modelo 3.1. 

 3.2. Variante del modelo 3.1, con historial previo. En este párrafo se supondrá que el 

radical 1R X• = no se obtiene directamente del monómero, sino que es resultado de una previa 

secuencia iniciada en dicho monómero: los radicales propagadores de dicha secuencia previa se 

denotarán como hS • ; para distinguirlos de los siguientes radicales, los iR• . El valor crítico h = c 

corresponderá a i = 1: 1 cR S• •= . 

Es preciso admitir que las terminaciones de la secuencia previa son de orden 1 (por 

ejemplo, transferencia a un tercer cuerpo, que podría ser el disolvente), y que los hS •  con h = 1, 2, 

3, ....., c-1 están siempre en estado estacionario: 
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( ),

1 2 3 2 1 1
p p p p p p

o c c cA S S S S S S R

ρ ρ ρ ρ ρ

• • • • • • •
− −→ ⎯⎯→ ⎯⎯→ ⎯⎯→ ⎯⎯→ ⎯⎯→ ⎯⎯→ = →

↓ ↓ ↓ ↓ ↓

LL
   (15) 

 
 Una vez alcanzado el grado de polimerización crítico h = c, la forma polímera P2c tendría 

ya la estructura necesaria [7] para actuar como catalizador de la isomerización de Y = Y1 en R1, 

de modo que el resto del mecanismo, análogo a (8), es (con • •
1 cX = R = S ) : 

 

    

2

2 3

3 4

2

2 2

2

( 1, 1)

p

p

p

ck

c c

i j

X R

R R

R R

X Y

X P

P Y p X

R R i j

β

ω

λ

ω

•

• •

• •

• •

⎯⎯→

⎯⎯→

⎯⎯→

⎯⎯→

⎯⎯→←⎯⎯

+ ⎯⎯→ +

+ ⎯⎯→ ≠ ≠

LLLLL

LLLLL      (16) 

 Las ecuaciones cinéticas para (15) y (16) se escriben (con 
2

iR R
∞

•= ∑ ): 

  

'
1 1

2 1 2

1 2 1

2
1 2 2

2

2
22

2

( )

( )

( )

2 2

o

c c c

c c c c

c

cc

S A p S

S pS p S

S pS p S

S X pS pX X X kp p Y

Y pX p Y

p X kp

R pX R

ρ

ρ

ρ

β ω λ

λ

ω

ω

•

•

•

− − −

• •

−

•

•

•

= − +

= − +

= − +

= = − − − + +

= −

= −

= −

KKKKKKKKK

KKKKKKKKK

   (17) 
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 Suponiendo que siempre 2 1 2 3 10, 0, 0, 0, , 0, , 0,c j cP S S S S S
• • • • • •

−= = = = = =L L y con 

( ) 1' /( ) c
o oA A p p ρ −= + , se llega nuevamente a las ecuaciones (10) del Brusselator. 

 En este modelo se ha atribuido carácter catalítico, sobre el sustrato Y, únicamente a la 

conformación del polímero especial P2c [23, 24]. Se pensó posteriormente extender dicho carácter 

a cualquier polímero elaborándose, por tanto, el Modelo con retroacción ejercida por varios 

polímeros. 

 3.3. Modelo con retroacción ejercida por varios polímeros. La secuencia de iniciación 

y propagación sería idéntica a la propuesta en 3.1 (etapas 8a, 8b y 8c): 

     

1

1 2

2 3

o
p

p

A R

R R

R R

•

• •

• •

→

⎯⎯→

⎯⎯→

LLLLL

LLLLL

      (18a) 

 Ahora se supone que cualquier 1R• puede isomerizarse en 1Y •  

 
     β• •

i iR Y⎯⎯→       (18b) 
 
 Las terminaciones serían de dos clases: de orden 1, con transferencia de reactividad a un 

tercer cuerpo: 

    ( )iR polimeros no catalizadoresγ• ⎯⎯→    (18c) 
 
 Formalmente, (18c) puede interpretarse también como una destrucción de radicales, de 

orden 1, sin originar polímeros, esto es, sin carácter de “terminación”. 

 O también terminaciones, por recombinación [20], que se supusieron reversibles: 

     i j i j
k

R R P
ω

• •
++ ↔      (18d) 

 
 Ahora, cualquiera de los polímeros Ph = Pi+j es capaz de actuar sobre cualquier sustrato Yi, 

catalizando la isomerización de éste en sus respectivas 1R• : 

     h i i hP Y R Pλ• •+ ⎯⎯→ +     (18e) 
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para todo h, independientemente de los valores de i y de j que hayan participado en su 

composición. Las ecuaciones cinéticas para el mecanismo (18) serán (con 

'

1 1 1 1
, ,i i h ij

i h j i
X R Y Y p p p

∞ ∞ ∞ ∞ ∞
•

= = =

⎛ ⎞= = = = ⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑ ∑ ): 

  

1 1 1 1 1
1 1

2 1 2 2 2 2 2 2
1 1

1 1 1
1

2 2 2
1

2

1

o i j h
j h

j h
j h

h
h

h
h

h i j
j i

R A pk R R X k p p Y

R pk pk R R R X k p p Y

Y R p Y

Y R p Y

p p p X

β ω λ

β γ ω λ

β λ

β λ

ω

∞ ∞•

+
= =

∞ ∞•

+
= =

∞•

=

∞•

=

∞•

+
= =

= − − − + +

= − − − − + +

= −

= −

⎛ ⎞= = =⎜ ⎟
⎝ ⎠

∑ ∑

∑ ∑

∑

∑

∑

LLLLLLLLLLLLLLLLLLLLLLLLL

LLLLLLLLLLLLLLLLLLLLLLLLL

1 1h

kp
∞ ∞

=

−∑ ∑

  (19) 

 
 Sumando todas las ecuaciones para 1R• , y todas las ecuaciones para 1Y • , resultan: 

    

2

2

oX A X X X kP PY

Y X PY

P X kP

β γ ω λ

β λ

ω

•

•

•

= − − − + +

= −

= −

   (20) 

 Admitiendo que siempre 0P
•

= , se llega nuevamente a las ecuaciones del Brusselator: 

    

2
0

2

X A X X X Y
k

Y X X Y
k

λωβ γ

λωβ

•

•

= − − +

= −
    (21) 

con las identificaciones Ac = k1A, β = k3β, γ = k4, λω/k = k2. 

 En el caso de no difusión, para β > γ + (λω/u) (Ao/γ)2 habrán oscilaciones de ciclo límite 

en X y en Y. Dado que en este modelo X comprende a todos los propagadores, no se precisa la 

“transmisión al resto de cadena” que ocurría en el modelo 3.1. 
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 Si se acoplan procesos de difusión, podrán obtenerse estructuraciones espaciales. 

 Análogamente a la transición efectuada desde 3.1 a 3.2, seguidamente se propone una 

variante del modelo 3.3, con historial previo. 

 3.4. Variante del modelo 3.3 con historial previo. En este párrafo se supondrá que el 

radical 1R•  no es el primer propagador que se obtiene directamente del monómero, sino el 

resultado de una previa secuencia iniciada en dicho monómero. Análogamente a (15): 

 

       
( )´

1 2 3 2 1
p p p p p p

o c c c iA S S S S S S R

ρ ρ ρ ρ ρ

• • • • • • •
− −→ ⎯⎯→ ⎯⎯→ ⎯⎯→ ⎯⎯→ ⎯⎯→ ⎯⎯→ = →

↓ ↓ ↓ ↓ ↓

LL
     (22) 

 
 
 Una vez alcanzado el grado de polimerización crítico, para Sc, todas las formas 

poliméricas procedentes de la recombinación de los radicales propagadores 1R•  puedan actuar 

sobre una cualquiera de las formas isómeras Y de estos radicales. No habrá inconveniente en 

admitir isomerización para los radicales de la secuencia previa [19]: 

     h jiS Uβ• ⎯⎯→       (23) 

 
 Siempre y cuando las formas Uh no presenten reconversión en las Sh, ni sean sustrato, 

para las citadas formas poliméricas Pi+j. 

 El resto del mecanismo lo constituye la continuación de la propagación: 

      

1 2

2 3

p

p

R R

R R

• •

• •

⎯⎯→

⎯⎯→
LLLLL

LLLLL

     (24a) 

las isomerizaciones de los 1R•  en 1Y • : 

      1 iR Yβ• •⎯⎯→      (24b) 
 
la destrucción de 1R• , de orden 1, 

      1R γ• ⎯⎯→      (24c) 
 
 Es posible la identificación γ = ρ, unificando las terminaciones de orden 1 que rinda 

polímeros no catalizadores, para los radicales previos S y para los radicales posteriores R. 
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 Las recombinaciones reversibles que dan polímeros catalizadores Pf = Pi+j: 

     i j i j
k

R R P
ω

• •
++ ↔      (24d) 

 
y las isomerizaciones de Yi en Ri catalizadas por ellos: 

 
    λ

i f i fY + P R + P⎯⎯→      (24e) 
 
 Las ecuaciones diferenciales para las etapas (22), (23) y (24), son (con 

1 1 1 1

, ,i i f ij
i f j i

X R Y Y P P P
∞ ∞ ∞ ∞ ∞

•

= = =

⎛ ⎞= = = = ⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑ ∑ ): 

  

´
1 1 1

2 1 2 2

1 2 1 1

1 1 1 1 1 1 1 1
1 1

2 1 2 2 2 2 2
1 1

( )

( )

( )

2

o

c c c c

c c j j
j j

i j j
j j

S A p S S

S pS p S S

S pS p S S

S R pS pR R R R X k P PY

R pR pR R R R X k PY

ρ β

ρ β

ρ β

β γ ω λ

β γ ω λ

•

•

•

− − − −

∞ ∞•

− +
= =

∞ ∞•

+
= =

= − + −

= − + −

= − + −

= = − − − + + +

= − − − − + +

∑ ∑

∑ ∑

KKKKKKKKKKKK

KKKKKKKKKKKK

KKKKKKKKKKKKKK

1 1 1
1

2 2 2
1

2

1 1 1
i j

f
f

f
f

j
p j i

Y R P Y

Y R P Y

P p p X kP

β λ

β λ

ω
+

∞•

=

∞•

=

∞ ∞ ∞• • •

= = =

= −

= −

⎛ ⎞= = = −⎜ ⎟
⎝ ⎠

∑

∑

∑ ∑ ∑

KKKKKKKKKKKKKK

KKKKKKKKKKKKKKKKKKKKKKKKKKKK
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 Suponiendo que siempre 1 2 3 10, 0, 0, 0, , 0,cP S S S S
• • • • •

−= = = = =K y denotando 
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+
= = =

⎛ ⎞ ⎛ ⎞= = = = =⎜ ⎟ ⎜ ⎟+ + ⎝ ⎠⎝ ⎠
∑ ∑ ∑ ∑ ∑  se llega nuevamente a 

las ecuaciones (21) del Brusselator. 

4. RESUMEN Y CONCLUSIONES 

 
 El modelo matemático de Prigogine y colaboradores, denominado Brusselator [12,14] ha 

sido tomado como marco teórico, interpretando sus términos como procedentes de reacciones de 

polimerización [4]. 

 Tras una sección preliminar en que se prueba la existencia de ciclo límite constituyendo 

un recinto de Poincaré-Bendixson [4,11] en torno al estado estacionario inestable, y se muestra la 

posibilidad de desestabilizar un estado estacionario homogéneo, al acoplado con difusión, se 

procedió a la citada interpretación. 

 Las variables principales X e Y han sido identificadas respectivamente con 

concentraciones de radical(es) propagador(es), y de su(s) respectivo(s) isómero(s) de posición del 

electrón libre radical [18,19]. 

 El término ~X2Y de las ecuaciones del modelo, que cuando éste se propuso fue muy 

discutido (4,25) por parecer que implicaba una etapa trimolecular, ha sido interpretado en 

términos uni- y bimoleculares [11], introduciendo el carácter catalítico de ciertas formas dímeras, 

o polímeras (la primera en el modelo simple 3.1; formas polímeras en los restantes mecanismos), 

producidas por recombinación reversible de moléculas propagadoras; y aplicando después en 

todos los modelos, eliminación adiabática de dichas formas, suponiéndolas siempre en estado 

estacionario. 

 En los mecanismos 3.1 y 3.3, 1R•  se identifica con el primer radical propagador, surgido 

inmediatamente del monómero, pero en los 3.2 y 3.4 se admite una secuencia de propagadores 

previa [7] antes de alcanzarse el grado de polimerización crítico, mínimo necesario para que las 

formas polímeras posean conformación catalizadora. El tratamiento matemático en estas 

variantes exige que los propagadores previos solamente posean destrucciones (terminaciones) de 

orden 1, y además que alcancen un estado estacionario rápido. 

 En todos los modelos presentados la concentración del monómero se ha supuesto 

constante, por ejemplo a causa de estar aquel en gran exceso. 
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 Se obtienen, en todos los mecanismos presentados, isomorfismos con las ecuaciones del 

Brusselator [9], es decir, posibilidad de oscilaciones de ciclo límite y –si se acopla con difusión, 

en la que la de X sea mucho más lenta que la de Y-, la posibilidad de estructuras disipativas 

espaciales, esto es, “orden emergente a partir de fluctuaciones”. 
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