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1. INTRODUCCION

A diferencia de otros conocidos ejemplos experimentales de oscilaciones quimicas [1-3],
las reacciones de polimerizacion no poseen mecanismos redox, por lo que han sido escasos los
intentos de adaptar modelos matematicos de ciclo limite (CL) a dichas reacciones [4].

Con todo, la propagacion y crecimiento de las cadenas de polimero por via radical no deja
de ofrecer alguna posibilidad a la autocatalisis, caracteristica ésta que suele juzgarse necesaria
para obtener dinamica de ciclo limite [5-7].

En este trabajo se explora una de esas posibilidades, insertando una parte del mecanismo
de polimerizacion en el conocido modelo Brusselator que, como se sabe, es susceptible de

generar inestabilidades quimicas tanto en el aspecto temporal como en el espacial.

2. BREVE REPASO DEL MARCO TEORICO: EL BRUSSELATOR [8-11].

Este modelo fue propuesto por la escuela belga de Prigogine [12], Lefever y Nicolis [13].

Matematicamente, su dindmica viene dada por las ecuaciones diferenciales [13]:

X = KA+ kX2 - kBX — kX
: (1)
Y = —k, XY + k,BX

O bien, con las notaciones [14]:
0 =kt X = _2 y=Y _2 A_kl ﬁ b= B—k3 )
k k k4 k4 k4
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ﬁ:a+x2y—bx—x
de

3)
q _ —X*y + bx
doe

El estado estacionario (SS) ocurre en X, = a, y, = b/a. Linealizando la ecuacion (3) en
torno del estado estacionario, la traza de la matriz del sistema variacional [15] es Tr,=b—a’*- 1y
el determinante correspondiente vale Det, = a> > 0 siempre. Si b > 1 + a°, el estado estacionario
es inestable [16].

Este estado estacionario inestable (véase la Figura 1) se puede rodear de la linea cerrada

QUVWNQ [4]. Se parte del punto Q, interseccion de la nuliclina X = Ocon el eje x, se procede
en vertical QU hasta alcanzar la nuliclina y = 0, se continua en la horizontal UV hasta la recta x

=1y, = a. La recta VW pasa por V y tiene pendiente -1, se prolonga hasta cortar a X = 0. Se

desciende en vertical WN hasta el eje x; el tramo WQ de dicho eje cierra el recinto. Si se calcula

el flujo del campo de direcciones de (3) a lo largo de la frontera QUVWNQ), se tendra:
En QU] ﬁ(—l, 0), x > 0, luego el flujo vale ﬁ().(, ;1) = —).( <0.

En JUV], n(0,1), y < 0, el flujo vale n(x,y) =y < 0.

En JVW], ﬁ(l,l) , el flujo es ﬁ().(, 5/) =a — X <0, ya que en este segmento X > X, = a
En JWN], n(1,0), X < 0, el flujo vale n(x,y) = x < 0.

En INQJ, n(0, 1), y > 0, el flujo n(x,y) =—y < 0
Por el teorema de Poincaré-Bendixson (PB) [17], si el estado estacionario es inestable
existe al menos un ciclo limite de (3), rodeando al sistema estacionario inestable, dentro del

recinto cerrado por QUVWNQ. Las variables (x,y), o las {X,Y} ejecutarian oscilaciones

sostenidas.

Si se afiaden términos de difusion, las ecuaciones se modificarian de la forma:
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Figura 1. Plano de fases del sistema (3).

El estado estacionario homogéneo (SSH) es el mismo, x, =, y, = b/a. Para un ntimero de
ondas n = mn/L, donde L es la longitud del sistema y m puede adoptar los valores 0,1,2,3....., se
tienen

Tt, = Tro, —n*(Dy + Dy) y  Det, = Det, — n’[(b-1)Dy — a’D,] + D,Dyn* (5)

Si Tro < 0 (es decir, b < 1 + a?), el estado estacionario es estable, y la pérdida de su
estabilidad por hacerse Tr, > 0 no es posible. Pero si es posible la desestabilizacion por hacerse
Det, < 0 [7]. Ello puede ocurrir en un intervalo p; < p < pa, con p =n?, si el discriminante

A=[(b-1)D, -a’D,]| -4a°D,D, >0 6)

El cumplimiento de esta condicion esta asegurado si Dy — 0. Como tanto p; como p, son

ambas positivas, la suma de las raices
(b-1)D, - a’D,

p,+p, = . >0
Xy

lo que sucede si
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b-1
DX<( = ij

La desestabilizacion del estado estacionario homogéneo conducird a la instauracion de un

ordenamiento espacialmente periddico del sistema, una estructura disipativa, es decir “orden

emergente a partir de fluctuaciones™ [12,13].

3. MECANISMOS QUIMICOS

El marco teorico repasado en la seccion precedente es conocido, por lo que a continuacion
se presentaran algunos esquemas cinéticos, referidos a reacciones de polimerizacion, que al estar
gobernadas por ecuaciones cinéticas isomorfas a (1), pueden exhibir comportamiento de ciclo
limite (oscilaciones sostenidas en las concentraciones) o bien, cuando se los acopla con difusion y
pasan a estar gobernadas por ecuaciones del tipo (4), puede originar estructuras disipativas
espaciales.

3.1. Inestabilidad impulsada por dimero. Se trata de una variante muy simple. Las
variables oscilatorias son X = R, concentracion del primer radical propagador, e Y, un isdémero
de dicho radical [18,19]. Por ejemplo, en una polimerizacion clasica iniciada con un iniciador I

(puede ser un peroxido organico), se forma R’ seglin

| < 21°

7
I*+M > R’ )

donde M representa al mondémero. Por ejemplo, para el mondémero vinilico acrilonitrilo
(CH,=CHCN) [20], seria R; =—[éH2CHICN]— y el isomero Y postulado podria ser

Y = 1-CH, CHCN-). En este modelo se considerara constante la concentracion del mondmero,

por ejemplo debido a que se encuentre en gran exceso, de modo que finalmente la iniciacion se
representard por:

A, > X (8a)
La propagacion de la polimerizacion se esquematiza:

X —25 R (8b)
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.................... (8¢)

donde se ha englobado en la constante p la concentracion de monomero, quien interviene en
todos los primeros miembros de las etapas de propagacion.

La isomerizacion directa de X en Y es:
X LY (8d)
la isomerizacion inversa de Y en X serd catalizada por el dimero D, el cual puede formarse en

una terminacion
2X ¢« D (8e)
k
que se supone reversible [11,21], y posteriormente, en efecto [22],

D+Y 25D+ X (8f)
Otras terminaciones seran no reversibles, dando polimero P;;

R® + R;—“’> P, (=1 j=1 (8g2)

o0
Denotando R = Z R, las ecuaciones diferenciales para el mecanismo (8) son:
2

X = A — pX — 20X" — BX + ADY +2kD

Y = AX - ADY
) )
D =wX’-kD
R = pX - @R’ = pX — oR’
Suponiendo D = 0, se transforman en
v Ao,
X:AO—pX—ﬂX+TXY
(10)

?:ﬁx—%?xw

las cuales son de la forma (1) si se denotan A, = kA, p =k, B =k3;B, Aaw/k = k.
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En el caso sin difusion, para 8 > p + (Aw/K)(A?/ p*) habra oscilaciones de ciclo limite

en X yenY. A la vista de la ecuacion (9) para R se tiene que R = pX — wR”. Es facil intuir que

las oscilaciones de X forzaran las del resto de propagadores R. Si se linealiza esta ecuacion [15],
introduciendo las perturbaciones
E=X-X, r=R-R, (11)

con R, = \/ Alo= \/ pX,/®, suponiendo  condiciones  ligeramente  supercriticas

Bzp+(lw/ k)(Af/ pz) ,sera & = & senHt, y la ecuacion linealizada
;: pé - 2wR,r = p& senHt — 2wR r (12)

admite para r la solucion periodica [15]

2wR sen Ht — H cos Ht
r= 0 13
pggo[ H? + 40)2R§ J (13)
esto es
2wR,sen Ht — H.cos Ht
R=R + 0 14
0 pézo( Hz + 40)2R§ ] ( )

, . . . . Sy . . , . L, )
Asi, las oscilaciones en R, debidas en ultima instancia al término autocatalitico ~ X°Y

procedente de la etapa (8f) catalizada por el dimero, impulsan las oscilaciones de los restantes
propagadores R: “se transmiten” a toda la propagacion de la polimerizacion. Si se acoplan
procesos de difusion, podran obtenerse estructuraciones espaciales. Seguidamente se expone una
variante del modelo 3.1.

3.2. Variante del modelo 3.1, con historial previo. En este parrafo se supondra que el

radical R’ = X no se obtiene directamente del mondémero, sino que es resultado de una previa
secuencia iniciada en dicho monomero: los radicales propagadores de dicha secuencia previa se
denotaran como S, ; para distinguirlos de los siguientes radicales, los R’. El valor critico h = ¢
corresponderdai=1: R’ =S;.

Es preciso admitir que las terminaciones de la secuencia previa son de orden 1 (por
ejemplo, transferencia a un tercer cuerpo, que podria ser el disolvente), y que los Sy conh=1, 2,

3, ....., c-1 estan siempre en estado estacionario:
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A—->S —Ft>S —>5S —Fs.. P>S,,—*t>5S;, —F >(SC' =R’ —>) (15)
oy oy oY Py Py

Una vez alcanzado el grado de polimerizacion critico h = ¢, la forma polimera P, tendria

ya la estructura necesaria [7] para actuar como catalizador de la isomerizacion de Y =Y, en Ry,

de modo que el resto del mecanismo, andlogo a (8), es (con X =R} =S)):

X —+5R;

............... (16)

R + R® —2 (=1, j=1)

Las ecuaciones cinéticas para (15) y (16) se escriben (con R = Z R™):
2

Si=A —(p+p)S,

S2= S, —(p+ p)S,

Sei = pS., — (P + S, (17)
Se=X = pS,, — pX — BX —20X + 2kp,, + Ap,.Y

Y = pX — Ap,Y

[.320 = wX* - kp,,

R = pX — @R’

339 Rev. Tberoam. Polim., 8(5), 333-346 (2007)



Revista Iberoamericana de Polimeros Volumen 8(5), Diciembre de 2007
Katime y Pérez Ortiz Modelos de tipo polibrusselator

Suponiendo que siempre P, =0, 8.1 =0,S,=0, §3 =0,--,3;,=0,---,5., =0, y con

A =A(p/ip+ ,0))c_1 , se llega nuevamente a las ecuaciones (10) del Brusselator.

En este modelo se ha atribuido caracter catalitico, sobre el sustrato Y, Unicamente a la
conformacion del polimero especial Py [23, 24]. Se penso posteriormente extender dicho caracter

a cualquier polimero elaborandose, por tanto, el Modelo con retroaccion ejercida por varios

polimeros.

3.3. Modelo con retroaccion ejercida por varios polimeros. La secuencia de iniciacion

y propagacion seria idéntica a la propuesta en 3.1 (etapas 8a, 8b y 8c):

R, — R; (18a)

Ahora se supone que cualquier R puede isomerizarse en Y,

R 5 Y’ (18b)

1 1

Las terminaciones serian de dos clases: de orden 1, con transferencia de reactividad a un

tercer cuerpo:

R’ —— (polimeros no catalizadores) (18¢)

Formalmente, (18c) puede interpretarse también como una destruccion de radicales, de
orden 1, sin originar polimeros, esto es, sin caracter de “terminacion”.

O también terminaciones, por recombinacion [20], que se supusieron reversibles:

R+ R SR, (18d)

Ahora, cualquiera de los polimeros Py, = Pjs; es capaz de actuar sobre cualquier sustrato Y;,

catalizando la isomerizacion de éste en sus respectivas R;:

P+Y —%5>R +P (18¢)
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para todo h, independientemente de los valores de i y de j que hayan participado en su

composicion. Las ecuaciones cinéticas para el mecanismo (18) seran (con

0

i=t

0

R =A — pk — SR — @R X + kz Pis +,12 pY,

i=1 h=1

R, = pk, — pk, = BR, — ¥R, — @R, X + kz P + A PY,

j=1 h=1

........................................................................... (19)

Sumando todas las ecuaciones para R/, y todas las ecuaciones para Y,”, resultan:

X = A — X — yX — @X* + kP + APY
Y = BX - APY (20)
P = wX? - kP

Admitiendo que siempre P = 0, se llega nuevamente a las ecuaciones del Brusselator:

X = A - X — 7X +’1wa2\(

, i 21)
Y = px - 22 x2y
K
con las identificaciones A, = kjA, B = ks, y = ks, Aoo/k = ko.
En el caso de no difusion, para B > + (Ao/u) (Ao/y)* habran oscilaciones de ciclo limite

en X y en Y. Dado que en este modelo X comprende a todos los propagadores, no se precisa la

“transmision al resto de cadena” que ocurria en el modelo 3.1.
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Si se acoplan procesos de difusion, podran obtenerse estructuraciones espaciales.
Analogamente a la transicion efectuada desde 3.1 a 3.2, seguidamente se propone una
variante del modelo 3.3, con historial previo.

3.4. Variante del modelo 3.3 con historial previo. En este parrafo se supondra que el

radical R/ no es el primer propagador que se obtiene directamente del mondmero, sino el

resultado de una previa secuencia iniciada en dicho monémero. Andlogamente a (15):

A—>S —258 P55 P P 5S;, —2>» S, ">(SC':R[—>)
o o o o o

Una vez alcanzado el grado de polimerizacion critico, para S., todas las formas
poliméricas procedentes de la recombinacion de los radicales propagadores R puedan actuar
sobre una cualquiera de las formas isdmeras Y de estos radicales. No habra inconveniente en
admitir isomerizacion para los radicales de la secuencia previa [19]:

s; U, (23)

Siempre y cuando las formas Uy no presenten reconversion en las Sy, ni sean sustrato,
para las citadas formas poliméricas P;;.

El resto del mecanismo lo constituye la continuacion de la propagacion:

R"——>R;
las isomerizaciones de los R en Y,":

RF 2>V (24b)
la destruccion de R, de orden 1,

RN —— (24c¢)

Es posible la identificacion y = p, unificando las terminaciones de orden 1 que rinda

polimeros no catalizadores, para los radicales previos S y para los radicales posteriores R.
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Las recombinaciones reversibles que dan polimeros catalizadores Py = P;.;:

R+ R <> Ry 24d)

k

y las isomerizaciones de Y; en R; catalizadas por ellos:

Yvi+Pf—k>Ri+Pf

(24e)
Las ecuaciones diferenciales para las etapas (22), (23) y (24), son (con
X=YR.,Y=>Y,P=>)P =Z(2Pijj):
i 1 f=1 j=1 \i=l

Si=A - (p+p)S - p5
Sy = pS1 —(p+,0)82 _ﬂsz

Scu = pSC_z - (p + p)sc—] - ﬂSC—l

Sc =R = pS., - PR, — AR —yR + oRX + kB, + 2D PY,

j=1 j=1
R, = PR, — PR, - AR, =R, — @R, X + k> 2, + AD_PY,
j=I j=1

(25)

Suponiendo que siempre P =0, él =0, S.2 =0, §3 = 0,...,S;_1 = 0,y denotando
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c-1
A = A\](L] , X = ZRi,Y = ZYi’ P= pr = Z(ZPMJ, se llega nuevamente a
1 1 i i

p+p+p
las ecuaciones (21) del Brusselator.
4. RESUMEN Y CONCLUSIONES

El modelo matematico de Prigogine y colaboradores, denominado Brusselator [12,14] ha
sido tomado como marco tedrico, interpretando sus términos como procedentes de reacciones de
polimerizacion [4].

Tras una seccion preliminar en que se prueba la existencia de ciclo limite constituyendo
un recinto de Poincaré-Bendixson [4,11] en torno al estado estacionario inestable, y se muestra la
posibilidad de desestabilizar un estado estacionario homogéneo, al acoplado con difusion, se
procedio a la citada interpretacion.

Las wvariables principales X e Y han sido identificadas respectivamente con
concentraciones de radical(es) propagador(es), y de su(s) respectivo(s) isdémero(s) de posicion del
electron libre radical [18,19].

El término ~XY de las ecuaciones del modelo, que cuando éste se propuso fue muy
discutido (4,25) por parecer que implicaba una etapa trimolecular, ha sido interpretado en
términos uni- y bimoleculares [11], introduciendo el caracter catalitico de ciertas formas dimeras,
o polimeras (la primera en el modelo simple 3.1; formas polimeras en los restantes mecanismos),
producidas por recombinacion reversible de moléculas propagadoras; y aplicando después en
todos los modelos, eliminacion adiabatica de dichas formas, suponiéndolas siempre en estado
estacionario.

En los mecanismos 3.1 y 3.3, R’ se identifica con el primer radical propagador, surgido

inmediatamente del monomero, pero en los 3.2 y 3.4 se admite una secuencia de propagadores
previa [7] antes de alcanzarse el grado de polimerizacion critico, minimo necesario para que las
formas polimeras posean conformacion catalizadora. El tratamiento matemdatico en estas
variantes exige que los propagadores previos solamente posean destrucciones (terminaciones) de
orden 1, y ademas que alcancen un estado estacionario rapido.

En todos los modelos presentados la concentracion del mondmero se ha supuesto

constante, por ejemplo a causa de estar aquel en gran exceso.
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Se obtienen, en todos los mecanismos presentados, isomorfismos con las ecuaciones del
Brusselator [9], es decir, posibilidad de oscilaciones de ciclo limite y —si se acopla con difusion,
en la que la de X sea mucho mas lenta que la de Y-, la posibilidad de estructuras disipativas

espaciales, esto es, “orden emergente a partir de fluctuaciones”.
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