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RESUMEN 

 Se proponen dos nuevos mecanismos cinéticos (0-Re-1,2 y 0-Re-1), utilizando el 

método de Lyapounov, con el propósito de estudiar la inestabilidad del estado estacionario. 

Ambos mecanismos tienen en cuenta una etapa de reiniciación en el proceso de 

polimerización, aunque ambos son diferentes debido a que el modelo 0-Re-1,2 considera dos 

modos de etapas de terminación: una de orden zero y otra de segundo orden. Sin embargo, en 

el segundo mecanismo, el 0-Re-1, sólo se considera una de estas dos etapas de terminación (la 

de orden cero). En ambos mecanismos propuestos se estudian los casos difusivo y no-

difusivo.  Los resultados obtenidos muestran que se obtienen sistemas capaces de exhibir 

ordenaciones en el tiempo (oscilaciones de ciclo límite) y en el espacio (estructuración 

emergente a partir de fluctuaciones). 

 
 Palabras claves: mecanismo cinético, Poincaré-Bendixon, método Lyapounov, 
proceso de polimerización, reacciones oscilantes, estado estacionario. 

 

INTRODUCCIÓN 
 

Los modelos matemáticos que la cinética formal asocia a los mecanismos de reacción 

química [1] se prestan bien, a causa de su frecuente no-linealidad, a modelar conductas 

dinámicas complejas como, por ejemplo, oscilaciones en las concentraciones [2]; y asimismo, 

al acoplarlos con procesos de difusión, sirven para dar cuenta de estructuras disipativas 

espaciales [3-6]. 

Este marco matemático ya se conocía [7,8] cuando llegaron los primeros 

descubrimientos experimentales [9-11] de los fenómenos citados, casos generalmente 

constituidos por sistemas redox complicados. Un campo en el que aún escasean las 

realizaciones experimentales de las mencionadas conductas, es el de las reacciones de 

polimerización; con todo ya se pueden proponer diversos esquemas mecanísticos teóricos, 
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susceptibles de dar dicho comportamiento [12]. En este artículo se presentan dos nuevas 

alternativas de este género de modelos. 

 

I. MECANISMO 0-Re-1,2. 
1. Esquema cinético 

0 1
ikA R⎯⎯→  

Iniciación de orden cero [1,13]. Dado que en esta variante la concentración de 

monómero se tomará como constante, por ejemplo, por hallarse en gran exceso, puede 

englobarse la intervención del monómero en la iniciación dentro del término constante kiAo;  

a partir del precursor Ao se obtendrá los primeros radicales propagadores R1: 

1 2

2 3

...........................

...........................

⎫+ ⎯⎯→
⎪
⎪+ ⎯⎯→
⎬
⎪
⎪
⎭

p

p

k

k

R M R

R M R  

 Procesos de propagación: 

      
´
ik

oA Y⎯⎯→  

 Es un proceso alternativo a la iniciación propiamente dicha, antes citada, a partir del 

precursor Ao se obtiene un radical Y isómero del primer propagador R1. 

 A modo de ejemplo, en el caso del monómero acetonitrilo la pareja R1/Y puede estar 

constituida por las formas 

     
Posibles estructuras del radical acetonitrilo. 

 

    

1 1

2 1 2

3 1 3

2

.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

⎫+ ⎯ ⎯→
⎪

+ ⎯ ⎯→ + ⎪
⎬

+ ⎯ ⎯→ + ⎪
⎪
⎭

k

k

k

R Y R

R Y R R

R Y R R
    (1) 

 Hipotéticamente, aquí se introducen las etapas que podrían denominarse 

"reiniciación", ya que en ellas se produce de nuevo R1, pero no se altera la longitud de cadena 

del radical propagador que choca con el isómero Y. 
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 Para la terminación se admiten dos posibilidades en competencia: 

 

1

1

1

2

...........................

⎫+ ⎯⎯→
⎪

+ ⎯⎯→ ⎬
⎪
⎭

k

k

Z R

Z R  

 
Una terminación de orden 1 respecto a los radicales, por cesión de reactividad ante un 

tercer cuerpo Z; o bien 
2k

i jR R+ ⎯⎯→  

otra terminación de orden 2 respecto a los propagadores. 

 Además se precisan las etapas: 

0 ⎫⎯⎯→ ⎪
⎬

⎯⎯→ ⎪⎭

F

F

Z Z

Z
 

en la que Z regresa al sistema a partir del precursor Zo, y Z sale del sistema en una etapa de 

primer orden. 

 A este conjunto de ecuaciones que representan el esquema cinético se les denominará 

(1). La denominación 0-Re-1,2 [12] alude al tipo de iniciación (orden cero), a la 

"reiniciación", y a las terminaciones competidoras, de órdenes 1 ó 2 respecto a los radicales. 

 
 2. Análisis en el caso no difusivo. Las ecuaciones cinéticas del mecanismo anterior, 

son: 

 

1 0 1 1 2 1 1 2 1 1 2 1 2

2 1 2 1 2 2 2 1 2 2 2

..... .......

..........

................................................................................................

•

•

= − + + + − − − −

= − − − − −

i p

p p

R k A k R M kRY kR Y k ZR k R R k R R

R k R M k R M k ZR k R R k R R

´
0 1 2

0 1 1 2 2

.......................

..........

........

•

•

⎫
⎪
⎪
⎪
⎪
⎬
⎪

= − − − ⎪
⎪
⎪= − − − − ⎭

iY k A kRY kR Y

Z FZ FZ k ZR k ZR

 (2) 

Sumando todas estas ecuaciones para iR
•

 y con la notación siguiente, 

 ΣRi = X ;  kiA0 = A;  ki´A0 = B;  FZ0 = C (3) 

se obtiene el sistema, 
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2
1 2

1

•

•

•

⎫= + − − ⎪
⎪

= − ⎬
⎪

= − − ⎪
⎭

X A kXY k ZX k X

Y B kXY

Z C FZ k ZX

 (4) 

Este sistema se puede reducir a dos variables suponiendo que Z alcance rápidamente 

un estado estacionario y se mantenga en él (
•

Z = 0 siempre). De aquí se llega a: 

 
21

2
1

•

•

⎫= + − − ⎪+ ⎬
⎪

= − ⎭

k CXX A kXY k X
k X F

Y B kXY

 (5) 

Para facilitar el estudio de la estabilidad de los estados estacionarios, se designa un 

pequeño parámetro μ [14-18] haciendo 

y = Y/B ;  A = a/μ ;  kB = b/μ;  C = c/μ;  k2 = 1/μ 

con lo que resulta el sistema [12-17]: 

 
21

1

( , )

1 ( , )

•

•

⎫= + − − = ⎪+ ⎬
⎪

= − = ⎭

k cXX a bXy X S X y
k X F

y kXy N X y

μ
 (6) 

La curva S = 0 o nuliclina característica, puede tener, para ciertos valores de los 

parámetros, un máximo y un mínimo; asimismo, la curva N = 0 (la otra nuliclina) puede 

cortarla en un punto único (que será un estado estacionario, SS) situado en la región entre el 

máximo y el mínimo (Figura 1). 

 

 
Figura 1. Plano de fases del sistema de ecuaciones (6). 
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Para estudiar la estabilidad de este estado estacionario se utiliza el primer método de 

Lyapunov [19-21]. Calculada la traza Tro y el determinante Deto de la matriz del sistema 

variacional linealizada [22-24] asociada al sistema (6): 

 ( )
´

´0o o
o o o o o o

X f kXTr kX Det X f by
μ μ

= − − = +  

donde  f(x) = [k1C/(k1X + F)] + X – (a/x), dado que siempre [Fk1C/(k1Xo + F)2] > 0 > -2Xo, 

será siempre Deto > 0; en tal caso, si Tro > 0 el sistema estacionario es inestable. Para μ → 0 

ello está asegurado si fo´ < 0, es decir, si el sistema estacionario se halla en efecto en la región 

intermedia entre el máximo y el mínimo de la característica. 

Por otra parte, se puede construir un recinto de Poincaré-Bendixson (recinto PB) [12, 

22, 25], de no retorno para las trayectorias de fase, encerrado por la siguiente frontera (Figura 

2): se parte de α, intersección de S = 0 con el eje X, y se sigue la vertical αβ hasta N = 0. 

Desde β, en la horizontal βγ hasta volver a S = 0; desde γ se baja la vertical γδ hasta el eje X. 

El tramo δα de dicho eje cierra el recinto. 

 
 Figura 2. Recinto PB para el caso de la sustitución de los valores a = 0,25; b = 1; k1 = 
1; C = 5; F = 1; kp + k = 0,5175 en el sistema de ecuaciones (6). 

 

El vector campo de direcciones del sistema (6) es ( , ) ( / , )F X y S Nμ
→ • •

= = . Evaluando 

su flujo a lo largo de αβγδα [26], se tiene que: 

 En ]α,β] , )0,1(n −=
→

 , S > 0 , el flujo = -S/μ < 0F n
→ →

⋅  

 En ]β,γ] , )1,0(n =
→

 , N < 0 , 0NnF <=⋅
→→

 

 En ]γ,δ] , )0,1(n =
→

 , S < 0 , / 0F n S μ
→ →

⋅ = <  
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 En ]δ,α] , )1,0(n −=
→

 , N > 0 , 0NnF <−=⋅
→→

 

Por lo tanto, las trayectorias no pueden salir del recinto delimitado por αβγδα. Si el 

sistema estacionario es inestable, dicho recinto contiene al menos un ciclo límite, y el sistema 

ejecutará oscilaciones sostenidas de las concentraciones X e Y. 

Para μ → 0, se dan oscilaciones de relajación [12, 26-27], y el ciclo límite se aproxima 

al que muestra la Figura 3 [17]. 

 
Figura 3. Ciclo límite de relajación. 

 

 Como ejemplo numérico lo anteriormente expuesto se cumple cuando los parámetros 

valen (en las unidades adecuadas): a = 0,25, b = 1, k1 = 1, c = 5, F = 1 y k = 0, 5175. Teniendo 

en cuenta estos valores, el sistema anterior se transforma en 

 
250, 25 ( , )

1

1 0,5175 ( , )

XX Xy X S x y
X

y Xy N x y

μ
•

•

= + − − =
+

= − =

 (7) 

que posee un estado estacionario único en el punto de inflexión de S = 0: xo = 0,5733, yo = 

3,3127. La curva S = 0 tiene un máximo en X = 0,4025, y = 3,3464 y un mínimo en x = 1, y = 

3,25. 

Además. se tiene 

   
( )0 2

52 0,1516 0
1o

o

S x y
x x
∂⎛ ⎞ = − + − = >⎜ ⎟∂⎝ ⎠ +

 

lo cual asegura que para μ → 0 sea Tro > 0, es decir, el citado ciclo estacionario es inestable. 
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3. Incluyendo la difusión. Las ecuaciones (5) se plantearon sin tener en cuenta la 

difusión de los radicales X, ni la del isómero Y (ésta es más probable que aquella [13], debido 

a la menor masa molecular de Y). Si se desea tener en cuenta la difusión, dichas ecuaciones se 

deben modificar de la forma [28-32]: 

 

2
21

2 2
1

2

2

⎫∂ ∂
= + − − + ⎪∂ + ∂ ⎪⎪

⎬
⎪∂ ∂ ⎪= − +

∂ ∂ ⎪⎭

x

y

X k CX XA kXY k X D
t k X F r

Y YB kXY D
t r

 (8) 

donde sólo se ha supuesto relevante una dimensión (r). Dx y Dy son los respectivos 

coeficientes de difusión. Las ecuaciones (8) pueden pasarse a una forma que contiene un 

pequeño parámetro [17, 21] por medio de las notaciones  

y = Y/B;  A = a/μ;  KB = b/μ;  C = c/μ;  k2 = 1/μ;  Dx = δx/μ 

obteniéndose el sistema (9): 

 

2
21

2
1

2

21

⎫∂ ∂
= + − − + ⎪∂ + ∂ ⎪⎪

⎬
⎪∂ ∂ ⎪= − +

∂ ∂ ⎪⎭

x

y

X k cX Xa bXy X
t k X F r

y ykXy D
t r

μ δ

 (9) 

 El sistema estacionario que se obtenía en el caso no difusivo, se denomina ahora 

"estado estacionario homogéneo" (SSH). La inestabilidad del sistema estacionario homogéneo 

se estudia también por el método de linealización de Lyapunov [22, 33-36], suplementado con 

condiciones de contorno (en este caso las de Neumann [20], flujo cero en los límites del 

sistema). Su traza es entonces 

0

2( )
n x yTr Tr D D n= − +  

siendo n = mπ/L el número de ondas, donde L es la longitud del sistema y m = 0, 1, 2, 3, ..... 

Es obvio que si el sistema estacionario homogéneo es estable a causa de Tro < 0, la difusión 

no podrá desestabilizarlo (ya que entonces Trn < 0 también). 

               2 4
0

0 0

1
n y x x y

S NDet Det n D D D D n
X yμ

⎡ ⎤⎛ ⎞∂ ∂⎛ ⎞= − + +⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦
 (10) 

y podrá ser Detn < 0 [5] (con desestabilización del sistema estacionario homogéneo) para 

algún valor de n, si (∂N/∂y)o > 0, ó si (∂S/∂x)o  > 0, aunque sea Det0 > 0. 
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 A modo de ejemplo numérico, sean (en unidades arbitrarias): 

 
a = 0,25, b = 1, k1 = 1, F = 1, k = 0, 5175, c = 5, μ = 1 (Dx = δx) 

 
 El sistema de ecuaciones (9) quedará de la forma: 

 

2
2

2

2

2

0,25
1

1 0,5175

⎫∂ ∂
= + − − + ⎪∂ + ∂ ⎪⎪

⎬
⎪∂ ∂ ⎪= − +
⎪∂ ∂ ⎭

x

y

X X XXy X D
t X r

y yXy D
t r

 (11) 

cuyo estado estacionario no difusivo es el mismo que se obtenía en el párrafo anterior: xo = 

0,5833, y0 = 3,3127. Después de la linealización, se encuentra Tro = -0,1503 (el sistema no 

difusivo ya no sería oscilatorio en estas condiciones [37]: el estado estacionario es estable y 

ya no puede completarse la prueba de Poincaré-Bendixson sobre la existencia de un ciclo 

límite). Además, Det0 = 0,95423, con lo cual  

 
 Detn = 0,95423 + (0,3019Dx – 0,1516 Dy) n2 + Dx Dy n4  (12) 

 Si Dy es lo bastante grande, podrá hacerse Detn < 0, y el sistema estacionario 

homogéneo se puede desestabilizar, para algún valor de n; así, una fluctuación inicial cuyo 

desarrollo de Fourier [4, 20, 22-23] contenga alguna componente con dicho número de ondas, 

sacará al sistema del estado estacionario homogéneo, y se establecerá un ordenamiento 

espacial nuevo: una estructura disipativa, un “orden producido por fluctuaciones”. 

 Si se denota p = n2, la expresión (12) toma la forma de una ecuación de segundo 

grado: 

 Detn = 0,9542 + (0,3019Dx – 0,1516 Dy) p + Dx Dy p2  (13) 

y es obvio que se podrá cumplir Detn < 0 en un cierto intervalo p1 < p < p2, si el discriminante 

Δ(13) es positivo: 

 Δ(13) = (0,3019 Dx – 0,1516 Dy)2 – 3,8168 Dx Dy > 0  (14) 

 Esta condición requiere que al menos uno de los dos coeficientes de difusión sea no 

nulo (Dx ≠ 0 ó Dy ≠ 0). Más aún, como p1 y p2 han de ser positivas (valores de n2), cosa 

posible ya que el producto de las raíces 1 2 0,9542 /( ) 0x yp p D D= > , la suma de las raíces 

será también positiva: ( ) ( )1 2 0,1526 0,3019 / 0y x x yp p D D D D+ = − > , lo cual exige que Dy > 
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(0,3019/0,1526) Dx. Esta condición parece posible de cumplir, ya que el radical Y, isómero de 

R1, menos masivo que los radicales X, se difundirá más rápidamente. 

 
 II. MECANISMO 0-Re-1. 

 Un estudio posterior reveló que las terminaciones de orden 2 no son imprescindibles 

para lograr una conducta oscilatoria ó estructuras ordenadas surgidas de fluctuaciones 

espaciales. Se elaboró este segundo esquema mecanístico [22-23, 38-40]: 

 

1. Esquema cinético y análisis en el caso no difusivo. Se han mantenido las etapas de 

"reiniciación" del esquema (1). El resto de la interpretación es idéntica a la efectuada en la 

sección I.1.  

    1
K

0 RA i⎯→⎯  

    
1 2

2 3

p

p

K

K

R M R

R M R

+ ⎯⎯→

+ ⎯⎯→
LLLLLLLL

 

    

....................................
RRMR

RRMR

R2MR

31
K

3

21
K

2

1
K

1

+⎯→⎯+

+⎯→⎯+

⎯→⎯+

 

            (15) 

    
...........................

RZ

RZ
1

1

K
2

K
1

⎯→⎯+

⎯→⎯+

 

    ⎯→⎯+ 2K
ji RR  

    

⎯→⎯

⎯→⎯

⎯→⎯

F

F
0

F
0

Z

ZZ

MM

 

  

 Las ecuaciones cinéticas son:  

  

1 0 1 1 2 1 1

2 1 2 1 2

0 1 2 1 2

0 1

.....

.......................................................................................

........ ......

•

•

•

•

= − + + + −

= − −

= − − − − − −

= − −

i p

p p

p p

R k A k R M kR M kR M k ZR

R k R M k R M k ZR

M FM k R M k R M kR M kR M

Z FZ FZ k 1 1 2 ........

⎫
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪− − ⎭ZR k ZR

  (16) 
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 Tras sumar las ecuaciones para las iR
•

, y con las mismas notaciones (3), se llega a 

 

1

1

( )

•

•

•

⎫= + − ⎪
⎪

= − + ⎬
⎪
⎪= − −
⎭

p

X A kXY k ZX

Y B k k XY

Z C FZ k ZX

 (17) 

 Eliminando Z mediante la hipótesis 0Z =
•

, resulta 

 
1

1

( )

•

•

⎫= + − ⎪+ ⎬
⎪= − + ⎭p

K CXX A kXY
k X F

Y B k k XY

 (18) 

 Para elegir el parámetro pequeño, se hace y = Y/B, A = a /μ, kB = b/μ, C = c/μ, y se 

obtendrá 

 
1

1

( , )

1 ( , )

k cXX a bXy S X y
k X F

y kXy N X y

μ
•

•

= + − =
+

= − =

 (19) 

 Ahora S = 0 sólo posee, en todo caso, un máximo en 

1 1
máx

FX X
ck
a

= =
⎛ ⎞

−⎜ ⎟
⎝ ⎠

 

si c > a. La intersección de S = 0 con N = 0 (el estado estacionario, SS) ocurre a la derecha del 

máximo si X0 > Xmáx, es decir, ( / )b k ac a> −  (Figura 4). 

 
Figura 4. Plano de fases del sistema de ecuaciones (19). 
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 Para estudiar la estabilidad de este ciclo estacionario se utilizó el primer método de 

Lyapurov [19-20]. 

 Calculada la traza Tro y el determinante Deto de la matriz del sistem variacional 

linealizado [22-24] asociado al sistema (19), 
´

´O O O
O O O O O O

x f kXTr = - - uX Det = X f + by
μ μ

⎡ ⎤⎣ ⎦  

donde ( ) ( )1 1f(x) = k c/(k X  + F) - a/X . Como ( ) 2
O O 1 1 ODet = kX /μ Fk c/(k X + F) 0⎡ ⎤ >⎣ ⎦  

siempre, para μ → 0 se tendrá Tro > 0 si fo´ < 0, es decir, si Xo > Xmáx. En tales condiciones el 

sistema estacionario es inestable. 

Es algo más complejo construir aquí la frontera del recinto PB de no retorno 

[12,25,41] para las trayectorias de fase. Se parte de α (Figura 5), corte de S = 0 con el eje de 

las X, y se va en vertical αβ hasta N = 0, luego en horizontal βγ hasta la recta X = X0 que es 

la isoclina correspondiente a la pendiente ( / ) ( / ) ( / )dy dX y x k bμ
• •

= = − de las trayectorias de 

fase. 

Desde γ se traza el segmento γδ, de pendiente –μk/b, hasta cortar en δ a S = 0. Se 

desciende en vertical δε hasta el eje X, y por último el tramo δε de dicho eje cierra el recinto. 

 
 

Figura 5. Recinto PB del sistema (19). 

 

 El flujo de ( )/ ,F S Nμ
→

=  a lo largo de αβγδεα vale: 

 En ]α,β] , )0,1(n −=
→

 , S > 0 , el flujo 0SnF <
μ

−=⋅
→→

 

 En ]β,γ] , )1,0(n =
→

 , N < 0 , 0NnF <=⋅
→→
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En ]γ,δ], ,1kn
b
μ→ ⎛ ⎞= ⎜ ⎟

⎝ ⎠
, 1k SF n

b
μ

μ

→ → ⎛ ⎞
⋅ = +⎜ ⎟

⎝ ⎠
  c1

1 c 1

Xkk c XN = -
b k X + F k X + F

⎡ ⎤
⎢ ⎥
⎣ ⎦

, ya que 

1 0

1 0

k cX ba
k X F k

= +
+

; y dado que en este segmento es X > X0, resulta 0nF <⋅
→→

. 

 En ]δ,ε] , )0,1(n =
→

 , S < 0 , 0SnF <
μ

=⋅
→→

 

 En ]ε,α] , )1,0(n −=
→

 , N > 0 , 0NnF <−=⋅
→→

 

 

 Por lo tanto, las trayectorias no pueden salir del recinto encerrado por αβγδεα. Si el 

sistema estacionario es inestable (X0 > Xmáx) dicho recinto contiene al menos un ciclo límite 

[26], y el sistema presenta oscilaciones sostenidas de las concentraciones X e Y. La Figura 6 

presenta la posible forma del ciclo límite [23]. 

 
Figura 6. Ciclo límite del sistema (19). 

 

Un conjunto concreto de valores numéricos de los parámetros, para los que se da este 

comportamiento sería (en unidades adecuadas): 

μ = 0,1 , a = 1, b = 1, c = 4, k1 = 1, F = 1, k = 0,5, con lo cual X0 = 3, y0 = 2/3, Xmáx = 1, 

(∂S/∂X)o = 5/12 > 0. 

 2. Incluyendo la difusión. De modo análogo al estudio realizado en la sección I.3., si 

se tiene en cuenta la difusión[30-32] de X y de Y (ésta más probable que aquella) las 

ecuaciones (18) se expresan 
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2
1

2
1

2

2( )

⎫∂ ∂
= + − + ⎪∂ + ∂ ⎪⎪

⎬
⎪∂ ∂ ⎪= − + +

∂ ∂ ⎪⎭

x

p y

X k CX XA kXY D
t k X F r

Y YB k k XY D
t r

 (20) 

 Con los cambios de notación, y = Y/B, A = a/μ, kB = b/μ, C = c/μ, Dx = δx/μ, pasan a 

la forma 

 

2
1

2
1

2

21 ( )

⎫∂ ∂
= + − + ⎪∂ + ∂ ⎪⎪

⎬
⎪∂ ∂ ⎪= − + +

∂ ∂ ⎪⎭

x

p y

X k cX Xa bXy
t k X F r

y yk k Xy D
t r

μ δ

 (21) 

 Pueden hacerse ahora consideraciones similares a las efectuadas en I.3 respecto de las 

ecuaciones (9) y (10), con idénticas conclusiones acerca de la desestabilización de un sistema 

estacionario estable homogéneo. Para el ejemplo numérico concreto (en unidades adecuadas) 

a = 1, b = 1, c = 4, k1 = 1, F = 1, μ = 1, K = 0,5, se tiene el sistema 

 

2

x 2

2

y 2

X 4X X=1 + Xy - + D
t X+1 r

y y= 1 - 0,5Xy + D
t r

⎫∂ ∂
⎪∂ ∂ ⎪⎪
⎬
⎪∂ ∂ ⎪
⎪∂ ∂ ⎭

 (22) 

 El sistema estacionario homogéneo es el mismo, X0 = 3, y0 = 2/3, que se daba en el 

caso no difusivo; linealizando la ecuación (22) en torno de él, se halla que 
0r

T = (5/12) - (3/2) 

= -(13/12) < 0 (en estas condiciones el sistema no difusivo no oscila); y Det0 = 3/8 > 0, pero 

puede hacerse Detn < 0, ya que 

 4
yxyx

2
n nDDD

12
5D

2
3n

8
3Det +⎟

⎠
⎞

⎜
⎝
⎛ −+=  (23) 

si Dy es suficientemente grande. Expresando de nuevo p = n2, la ecuación (23) toma la forma  

 2
yxyxn pDDpD

12
5D

2
3

8
3Det +⎟

⎠
⎞

⎜
⎝
⎛ −+=  (24) 

y puede ser Detn < 0 en el intervalo p1 < p < p2 si el discriminante 

 0DD
2
3D

12
5D

2
3

yx

2

yx)24( >−⎟
⎠
⎞

⎜
⎝
⎛ −=Δ  (25) 

 La suma de las raíces de Detn = 0 es  
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0
DD

D
2
3D

12
5

pp
yx

xy

21 >
−

=+  

si se cumple que Dy > (18/5)Dx; esto es posible ya que Y es menos masivo y difundirá más 

rápidamente. 

RESUMEN Y CONCLUSIONES 

 En este artículo se proponen dos mecanismos de polimerización capaces de exhibir 

ordenaciones en el tiempo (oscilaciones de ciclo límite) y en el espacio (estructuración 

emergente a partir de fluctuaciones) [42-45]. Los esquemas cinéticos son algo distintos de 

otros intentos previos en este sentido [12]. La inclusión del efecto de la "reiniciación" provee 

en ambos casos un  flujo de realimentación positiva [46] (análogo a una autocatálisis)[39], y 

la no-linealidad [14-15] precisa para obtener los deseados comportamientos se alcanza gracias 

a la terminación por transferencia a un tercer cuerpo que fluye a través del sistema. El 

acoplamiento de las dos variables, con realimentación negativa [46-47], viene dado por la 

propia propagación de la polimerización. El mecanismo I incorpora una no-linealidad 

suplementaria, no imprescindible, en la terminación de orden 2. 

 Los efectos oscilatorios que se observarían en ausencia de difusión tenderían a originar 

distribuciones de masas moleculares que también oscilarían (según el grado de avance al que 

se detenga la polimerización [48]) dentro de un cierto rango. La distribución espacial del 

sistema con difusión es posible, dadas las características de los coeficientes de difusión del 

radical isómero Y y de los radicales propagadores, y si se admite que se cumplen balances 

locales de materia [49] (en las regiones donde X sea grande, será el número de cadenas 

poliméricas terminadas, ya que éstas últimas se forman a partir de la desaparición de los 

radicales propagadores que se recombinan), se produciría una distribución espacialmente 

periódica de las cadenas, lo cual podría ser de interés en la morfogénesis de sistemas 

biológicos [50]. 
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