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RESUMEN

Se proponen dos nuevos mecanismos cinéticos (0-Re-1,2 y 0-Re-1), utilizando el
método de Lyapounov, con el propoésito de estudiar la inestabilidad del estado estacionario.
Ambos mecanismos tienen en cuenta una etapa de reiniciacion en el proceso de
polimerizacion, aunque ambos son diferentes debido a que el modelo 0-Re-1,2 considera dos
modos de etapas de terminacion: una de orden zero y otra de segundo orden. Sin embargo, en
el segundo mecanismo, el 0-Re-1, s6lo se considera una de estas dos etapas de terminacion (la
de orden cero). En ambos mecanismos propuestos se estudian los casos difusivo y no-
difusivo. Los resultados obtenidos muestran que se obtienen sistemas capaces de exhibir
ordenaciones en el tiempo (oscilaciones de ciclo limite) y en el espacio (estructuracion

emergente a partir de fluctuaciones).

Palabras claves: mecanismo cinético, Poincaré-Bendixon, método Lyapounov,
proceso de polimerizacion, reacciones oscilantes, estado estacionario.

INTRODUCCION

Los modelos matematicos que la cinética formal asocia a los mecanismos de reaccion
quimica [1] se prestan bien, a causa de su frecuente no-linealidad, a modelar conductas
dinamicas complejas como, por ejemplo, oscilaciones en las concentraciones [2]; y asimismo,
al acoplarlos con procesos de difusion, sirven para dar cuenta de estructuras disipativas
espaciales [3-6].

Este marco matematico ya se conocia [7,8] cuando llegaron los primeros
descubrimientos experimentales [9-11] de los fendmenos citados, casos generalmente
constituidos por sistemas redox complicados. Un campo en el que aun escasean las
realizaciones experimentales de las mencionadas conductas, es el de las reacciones de

polimerizacion; con todo ya se pueden proponer diversos esquemas mecanisticos tedricos,
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susceptibles de dar dicho comportamiento [12]. En este articulo se presentan dos nuevas

alternativas de este género de modelos.

I. MECANISMO 0-Re-1,2.
1. Esquema cinético

A——>R
Iniciacion de orden cero [1,13]. Dado que en esta variante la concentracion de
mondémero se tomard como constante, por ejemplo, por hallarse en gran exceso, puede
englobarse la intervencion del mondmero en la iniciacion dentro del término constante k;A,;
a partir del precursor A, se obtendra los primeros radicales propagadores R;:
R+M—5R

R,+M — R,

Procesos de propagacion:
A —SoY

Es un proceso alternativo a la iniciacion propiamente dicha, antes citada, a partir del

precursor A, se obtiene un radical Y isomero del primer propagador R;.

A modo de ejemplo, en el caso del mondmero acetonitrilo la pareja R;/Y puede estar
constituida por las formas

C=N

C=N

Posibles estructuras del radical acetonitrilo.

R, +Y —%5 2R,
R,+Y —“> R, +R, 0
R,+Y —> R, +R,

Hipotéticamente, aqui se introducen las etapas que podrian denominarse

"reiniciacion", ya que en ellas se produce de nuevo R;, pero no se altera la longitud de cadena

del radical propagador que choca con el isomero Y.
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Para la terminacion se admiten dos posibilidades en competencia:

Z+R—
Z+R,—4

Una terminacion de orden 1 respecto a los radicales, por cesion de reactividad ante un
tercer cuerpo Z; o bien

R +R,—>
otra terminacion de orden 2 respecto a los propagadores.
Ademas se precisan las etapas:
Z,—— 7 }

Z—F>

en la que Z regresa al sistema a partir del precursor Z,, y Z sale del sistema en una etapa de
primer orden.

A este conjunto de ecuaciones que representan el esquema cinético se les denominara
(1). La denominacion 0-Re-1,2 [12] alude al tipo de iniciacion (orden cero), a la

"reiniciacion", y a las terminaciones competidoras, de 6érdenes 1 6 2 respecto a los radicales.

2. Andlisis en el caso no difusivo. Las ecuaciones cinéticas del mecanismo anterior,

son:
Ri= kA — kK RM + kRY +kRY +....— KZR = K,RR —K,RR, —......

R: =k RM —k R,M K ZR, ~k,R,R,—K,R,R, ...

....................................................................................................................... (2)
Y =k A —kRY —KR)Y —.........
Z=FZ,~FZ-KZR —K,ZR, —.......
Sumando todas estas ecuaciones para Iii y con la notacion siguiente,
ZRi:X; kiA():A; ki'A():B; FZOZC (3)

se obtiene el sistema,
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X = A+ kXY —kZX — k,X>
Y = B — kXY &)
Z=C - FZ - kZX

Este sistema se puede reducir a dos variables suponiendo que Z alcance rapidamente

un estado estacionario y se mantenga en ¢l (Z= 0 siempre). De aqui se llega a:
kCX KX
k1X +F (5)

X = A+ kXY —

Y = B — kXY
Para facilitar el estudio de la estabilidad de los estados estacionarios, se designa un
pequetio parametro p [14-18] haciendo
y=Y/B; A=a/u; kB=b/u; C=c/u; kx=1/p

con lo que resulta el sistema [12-17]:

X X7 =s(X.y)
klx +F (6)

y=1-kXy = N(X,y)

,u).( =a + bXy -

La curva S = 0 o nuliclina caracteristica, puede tener, para ciertos valores de los
parametros, un maximo y un minimo; asimismo, la curva N = 0 (la otra nuliclina) puede
cortarla en un punto Unico (que serd un estado estacionario, SS) situado en la region entre el

maximo y el minimo (Figura 1).

Y

10 |

N=0

5b

2.5/ ~_

2.5 |

Figura 1. Plano de fases del sistema de ecuaciones (6).
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Para estudiar la estabilidad de este estado estacionario se utiliza el primer método de
Lyapunov [19-21]. Calculada la traza Tr, y el determinante Det, de la matriz del sistema

variacional linealizada [22-24] asociada al sistema (6):

Tr, = _Xoh kX, Det, = KX,

H H
donde f(x) = [k;C/(k;X + F)] + X — (a/x), dado que siempre [Fk;C/(k;X, + F)*] > 0 > -2X,,

(X, f, + by, )

sera siempre Det, > 0; en tal caso, si Tr, > 0 el sistema estacionario es inestable. Para p — 0
ello estd asegurado si f,” <0, es decir, si el sistema estacionario se halla en efecto en la region
intermedia entre el maximo y el minimo de la caracteristica.

Por otra parte, se puede construir un recinto de Poincaré-Bendixson (recinto PB) [12,
22, 25], de no retorno para las trayectorias de fase, encerrado por la siguiente frontera (Figura
2): se parte de o, interseccion de S = 0 con el eje X, y se sigue la vertical a3 hasta N = 0.

Desde B, en la horizontal By hasta volver a S = 0; desde y se baja la vertical yd hasta el eje X.

El tramo da de dicho eje cierra el recinto.

gl 10 Y
0] \
7.5 |\ ’ l d
51 ag - ___/__,___
2.5 |/ e
I i, S
a 1 2 37 8 4 5

Figura 2. Recinto PB para el caso de la sustitucion de los valores a = 0,25; b= 1; k; =
1;C=5;F=1;k, +k=0,5175 en el sistema de ecuaciones (6).

El vector campo de direcciones del sistema (6) es E = ().( , )./) =(S/u,N). Evaluando

su flujo a lo largo de afyda [26], se tiene que:

Ena,B], n=(=1,0),S>0,el flujo F-n =-S/u <0

En]B,y], n=(0,1) ,N<O0, Fn=N<0

Enly,5], n=(1,0),S<0, F-n=S/u<0
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- - >

En]d,0], n=(0,-1) ,N>0, Fn=-N<0
Por lo tanto, las trayectorias no pueden salir del recinto delimitado por afyda. Si el
sistema estacionario es inestable, dicho recinto contiene al menos un ciclo limite, y el sistema

ejecutard oscilaciones sostenidas de las concentraciones X e Y.

Para p — 0, se dan oscilaciones de relajacion [12, 26-27], y el ciclo limite se aproxima

al que muestra la Figura 3 [17].
XY
i I

aJ:H i\

2.5|'

|
2| |

|
1.5

S

o A

'-I."\-.IJ' ....... IFyEYr

20 40 60 ao 100 I:(n’.un)
Figura 3. Ciclo limite de relajacion.

Como ejemplo numérico lo anteriormente expuesto se cumple cuando los parametros
valen (en las unidades adecuadas): a=0,25,b=1,k; =1,c=5,F=1y k=0, 5175. Teniendo

en cuenta estos valores, el sistema anterior se transforma en

X —oszFXy—i—x2 S(X,Y)
X +1 (7)

y=1-0,5175Xy = N(x, )
que posee un estado estacionario Unico en el punto de inflexion de S = 0: x, = 0,5733, y, =

3,3127. La curva S = 0 tiene un maximo en X = 0,4025, y = 3,3464 y un minimoenx =1,y =

3,25.

Ademas. se tiene

(éj = _2)(0 +Y, —;2: 0,1516 > 0
OX s 1

lo cual asegura que para u — 0 sea Tr, > 0, es decir, el citado ciclo estacionario es inestable.

259 Rev. Iberoam. Polim., 7(4), 254-269(2006)



Revista Iberoamericana de Polimero Volumen 7(4), Diciembre de 2006
Pérez Ortiz y Katime Mecanismos reacciones oscilantes de polimerizacion

3. Incluyendo la difusion. Las ecuaciones (5) se plantearon sin tener en cuenta la
difusion de los radicales X, ni la del isomero Y (ésta es mas probable que aquella [13], debido
a la menor masa molecular de Y). Si se desea tener en cuenta la difusion, dichas ecuaciones se

deben modificar de la forma [28-32]:

2
R arkxy - KXy ey p O
at KX +F or
(8)
2
N _B-kxy +D, %Y
ot Yor

donde solo se ha supuesto relevante una dimension (r). Dy y Dy son los respectivos
coeficientes de difusion. Las ecuaciones (8) pueden pasarse a una forma que contiene un
pequeiio pardmetro [17, 21] por medio de las notaciones

y=Y/B; A=a/p; KB=b/u; C=c/yu; ky=1/p; Dy =04/
obteniéndose el sistema (9):

2
k.cX _X2+5X6)2(
kX +F or

1

oX
—=a+bXy -
M y
©)

ar*

2
%zl—kXy+Dy6 y

El sistema estacionario que se obtenia en el caso no difusivo, se denomina ahora
"estado estacionario homogéneo" (SSH). La inestabilidad del sistema estacionario homogéneo
se estudia también por el método de linealizacion de Lyapunov [22, 33-36], suplementado con
condiciones de contorno (en este caso las de Neumann [20], flujo cero en los limites del
sistema). Su traza es entonces

Tr =Tr — (D, +D,)n’
siendo n = mnt/L el nimero de ondas, donde L es la longitud del sistemaym=0, 1, 2, 3, .....
Es obvio que si el sistema estacionario homogéneo es estable a causa de Tr, < 0, la difusion
no podra desestabilizarlo (ya que entonces Tr, < 0 también).

Det, = Det, — n{l(ﬁ] D, + (O_Nj DX} + D,D,n’ (10)
ﬂ 8X 0 ay 0

y podra ser Det, < 0 [5] (con desestabilizacion del sistema estacionario homogéneo) para

algtin valor de n, si (ON/dy), > 0, 6 si (0S/0x), > 0, aunque sea Dety > 0.
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A modo de ejemplo numérico, sean (en unidades arbitrarias):

a=025b=1,k;=1,F=1,k=0,5175,c=5,u=1(Dy=5)

El sistema de ecuaciones (9) quedara de la forma:

2
%=0,25+Xy— - X+ DX%
ot X +1 or
(11)
2
Y _1-05175%y + D, 7Y
ot or

cuyo estado estacionario no difusivo es el mismo que se obtenia en el parrafo anterior: x, =
0,5833, yo = 3,3127. Después de la linealizacion, se encuentra Tr, = -0,1503 (el sistema no
difusivo ya no seria oscilatorio en estas condiciones [37]: el estado estacionario es estable y
ya no puede completarse la prueba de Poincaré-Bendixson sobre la existencia de un ciclo

limite). Ademas, Dety = 0,95423, con lo cual

Det, = 0,95423 + (0,3019D, — 0,1516 D,) n* + Dy D, n* (12)

Si Dy es lo bastante grande, podra hacerse Det, < 0, y el sistema estacionario
homogéneo se puede desestabilizar, para algun valor de n; asi, una fluctuacion inicial cuyo
desarrollo de Fourier [4, 20, 22-23] contenga alguna componente con dicho niimero de ondas,
sacard al sistema del estado estacionario homogéneo, y se establecera un ordenamiento
espacial nuevo: una estructura disipativa, un “orden producido por fluctuaciones”.

Si se denota p = n’, la expresiéon (12) toma la forma de una ecuaciéon de segundo
grado:

Det, = 0,9542 + (0,3019D, — 0,1516 Dy) p + D, D, p° (13)

y es obvio que se podra cumplir Det, < 0 en un cierto intervalo p; < p < pa, si el discriminante
A(13) €s positivo:

Aaz) = (0,3019 Dy — 0,1516 Dy)> — 3,8168 Dy D, > 0 (14)

Esta condicion requiere que al menos uno de los dos coeficientes de difusién sea no
nulo (Dx # 0 6 Dy # 0). Mas atin, como p; y p» han de ser positivas (valores de n?), cosa

posible ya que el producto de las raices p, p, = 0,9542/(D, D,) > 0, la suma de las raices

serd también positiva: p, +p, = (0,1526 D, —0,3019DX)/( D, Dy) >0, lo cual exige que Dy >
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(0,3019/0,1526) Dy. Esta condicion parece posible de cumplir, ya que el radical Y, isomero de

R}, menos masivo que los radicales X, se difundird mas rapidamente.

I1. MECANISMO 0-Re-1.

Un estudio posterior reveld que las terminaciones de orden 2 no son imprescindibles

para lograr una conducta oscilatoria 6 estructuras ordenadas surgidas de fluctuaciones

espaciales. Se elabor¢ este segundo esquema mecanistico [22-23, 38-40]:

1. Esquema cinético y analisis en el caso no difusivo. Se han mantenido las etapas de

"reiniciacion” del esquema (1). El resto de la interpretacion es idéntica a la efectuada en la

seccion 1.1.

A,—>R,

R +M—5R,

R, +M — R,

R, +M—52R,
R, +M—5R, +R,
R, +M—>R, +R,

Las ecuaciones cinéticas son:

Ri=kA —k,RM +kRM +kR,M +

R:=k,RM —k R,M —kZR,
....................................................................................... (16)
o= K,RM =K RM — ... ~kKRM —kR,M —...

Z=FZ,-FZ-kZR —KZR, ...

262

(15)
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Tras sumar las ecuaciones para las R, y con las mismas notaciones (3), se llega a
X = A+kXY -k ZX

Y =B—(k, +k)XY (17)

Z =C—FZ —kZX
Eliminando Z mediante la hipéotesis z = 0 , resulta

K,CX

X = A+ kXY — =2
kX +F

(18)
Y =B - (k, + k)XY

Para elegir el pardmetro pequefio, se hace y = Y/B, A =a/u, kB =b/p, C =c/p, y se
obtendra

v k,cX
X =a + bXy - —==— = S(X,
yzi y KX + F (X,Y)

(19)
y =1-Kxy=N(X,y)

Ahora S = 0 s6lo posee, en todo caso, un maximo en

F

kl( C—1J
a

si ¢ >a. La interseccion de S =0 con N = 0 (el estado estacionario, SS) ocurre a la derecha del

maximo si Xy > Xpax, es decir, (b/k) > Jac-a (Figura 4).

X=X

Y
3.5 |

3|
2.5 |
2|
1.5 |

0.5 |

0.2 0.4 0.6 0.8 1 1.2 X

Figura 4. Plano de fases del sistema de ecuaciones (19).
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Para estudiar la estabilidad de este ciclo estacionario se utilizo el primer método de
Lyapurov [19-20].

Calculada la traza Tr, y el determinante Det, de la matriz del sistem variacional
linealizado [22-24] asociado al sistema (19),
_Xofo kX,

n
donde  f(x) = (k,c/(k,X +F))-(a/X). Como Det,=(kX,/u)|Fkc/(k,X,+F)]>0

Tr, =

[Xofé + by, ]

-uX, Det, =

siempre, para p — 0 se tendra Tr, > 0 si f,” <0, es decir, si X, > Xnax. En tales condiciones el
sistema estacionario es inestable.

Es algo mas complejo construir aqui la frontera del recinto PB de no retorno
[12,25,41] para las trayectorias de fase. Se parte de a (Figura 5), corte de S = 0 con el eje de

las X, y se va en vertical o hasta N = 0, luego en horizontal By hasta la recta X = X, que es

la isoclina correspondiente a la pendiente (dy/dX) = (.y/ X.) = — (uk /b)de las trayectorias de
fase.
Desde y se traza el segmento 3, de pendiente —uk/b, hasta cortar en & a S = 0. Se

desciende en vertical d¢ hasta el eje X, y por ultimo el tramo d¢ de dicho eje cierra el recinto.

X X
0.8
0.5
0.4 0.6
=5
0.3 ,"l
0.4 1 |I I'| I/\\/"'w-— e =3
0.2 /. -
[/ _—
G} s =2, =8
0.1 i
I
/
=10
2 r 20 40 60 20 100 t(min)

Figura 5. Recinto PB del sistema (19).

El flujo de F- (S/u,N) alo largo de afydea vale:

EnJoBl, n=(-10),5>0, el fluijo F-n=—><0
0

En]B,y], n=(0,1) ,N<O0, Fn=N<0
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En ]Y,S],nz(ﬂ—k,} Fn=S) oK X X , ya que
b b \ b | kX +F kX+F
k.cX, b 22
——— =a + —; y dado que en este segmento es X > Xy, resulta F-n <0.
kX, +F K

En]o,e], n=(1,0) ,S<O0, F-n:§<0
1)

EnlJe,a], n=(0,-1) ,N>0, Fn=-N<0

Por lo tanto, las trayectorias no pueden salir del recinto encerrado por afydea. Si el
sistema estacionario es inestable (X > Xpsx) dicho recinto contiene al menos un ciclo limite

[26], y el sistema presenta oscilaciones sostenidas de las concentraciones X e Y. La Figura 6

presenta la posible forma del ciclo limite [23].

Y

38 (3, 2/3)

2 4 s

Figura 6. Ciclo limite del sistema (19).

Un conjunto concreto de valores numéricos de los parametros, para los que se da este
comportamiento seria (en unidades adecuadas):
u=01,a=1,b=1,c=4k =1,F=1,k=0,5 con lo cual Xy =3, yo=2/3, Xpax = 1,
(0S/0X), =5/12> 0.

2. Incluyendo la difusion. De modo analogo al estudio realizado en la seccion 1.3., si
se tiene en cuenta la difusion[30-32] de X y de Y (ésta mas probable que aquella) las

ecuaciones (18) se expresan
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2
%=A+ kXY — KCX + DXa >2<
ot kX +F or

(20)

oY o’Y
E:B —(kp+k)XY + DyW

Con los cambios de notacion, y = Y/B, A = a/p, kB =b/pu, C = c¢/p, Dy = 0/, pasan a

la forma
2
,ua—X:a+be— eX + X8>2<
ot kX +F or
(21)
oy o’y
EZI—(kp'Fk)Xy'FDyW

Pueden hacerse ahora consideraciones similares a las efectuadas en 1.3 respecto de las
ecuaciones (9) y (10), con idénticas conclusiones acerca de la desestabilizacion de un sistema
estacionario estable homogéneo. Para el ejemplo numérico concreto (en unidades adecuadas)
a=1,b=1,c=4,k=1,F=1,u=1,K=0,5, se tiene el sistema

2
K _y,xy. B 3X
ot X+1 or

(22)

2
¥ _1_05xy+D, Y
8t y

o
El sistema estacionario homogéneo es el mismo, Xy = 3, yo = 2/3, que se daba en el
caso no difusivo; linealizando la ecuacion (22) en torno de ¢l, se halla que T, = (5/12) - (3/2)

=-(13/12) < 0 (en estas condiciones el sistema no difusivo no oscila); y Dety = 3/8 > 0, pero

puede hacerse Det, <0, ya que

Det_ . EDX ER +D D n’ (23)
8 2 12 7 Y
si Dy es suficientemente grande. Expresando de nuevo p = n’, la ecuacion (23) toma la forma
3 (3 5 2
Det, =—+| =D —-—D, |[p+D,D 24
n 8 (2 X 12 yjp X yp ( )

y puede ser Det, < 0 en el intervalo p; < p <p; si el discriminante

3 5 Y 3
A,,=|=D,——D, | —=D,D,>0 25
(24) (2 X 12 y] 2 Xy ( )

La suma de las raices de Det, = 0 es
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127 2 *
+p,=4—=—>0
| Sl Y Dny

S ES

st se cumple que Dy > (18/5)Dy; esto es posible ya que Y es menos masivo y difundird mas
rapidamente.
RESUMEN Y CONCLUSIONES

En este articulo se proponen dos mecanismos de polimerizacidon capaces de exhibir
ordenaciones en el tiempo (oscilaciones de ciclo limite) y en el espacio (estructuracion
emergente a partir de fluctuaciones) [42-45]. Los esquemas cinéticos son algo distintos de
otros intentos previos en este sentido [12]. La inclusion del efecto de la "reiniciacion" provee
en ambos casos un flujo de realimentacion positiva [46] (andlogo a una autocatalisis)[39], y
la no-linealidad [14-15] precisa para obtener los deseados comportamientos se alcanza gracias
a la terminacidon por transferencia a un tercer cuerpo que fluye a través del sistema. El
acoplamiento de las dos variables, con realimentacion negativa [46-47], viene dado por la
propia propagacion de la polimerizacion. El mecanismo I incorpora una no-linealidad
suplementaria, no imprescindible, en la terminacion de orden 2.

Los efectos oscilatorios que se observarian en ausencia de difusion tenderian a originar
distribuciones de masas moleculares que también oscilarian (segin el grado de avance al que
se detenga la polimerizacion [48]) dentro de un cierto rango. La distribucion espacial del
sistema con difusion es posible, dadas las caracteristicas de los coeficientes de difusion del
radical isémero Y y de los radicales propagadores, y si se admite que se cumplen balances
locales de materia [49] (en las regiones donde X sea grande, serd el numero de cadenas
poliméricas terminadas, ya que éstas Ultimas se forman a partir de la desaparicion de los
radicales propagadores que se recombinan), se produciria una distribucién espacialmente
periddica de las cadenas, lo cual podria ser de interés en la morfogénesis de sistemas

biologicos [50].
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