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INTRODUCCION

En este trabajo se ha tomado un sencillo prototipo de polimerizacion [1,2] alongada
por adicion de mondmero paso a paso, y habida cuenta de las peculiaridades de este tipo de
reacciones, se ha explorado qué minimas modificaciones [3] podrian hacérsele a fin de
obtener un comportamiento oscilatorio, tanto de oscilacion amortiguada como de ciclo limite.

La seccion segunda resume la teoria general involucrada, en la seccion tercera se

plantea y analiza la variante de oscilacion amortiguada; y en la cuarta, la de ciclo limite.

TEORIA GENERAL

Por su mayor simplicidad [4], el tratamiento se hace en dos variables {x,y}

respectivamente relacionadas con la concentracion del mondémero (M) y con la concentracion

total de propagadores (R = Z R ), cuya evolucion se rige por ecuaciones cinéticas
i=1

X = S(X,Y)

: (1)
Y = N(X)Y)
Un estado estacionario de (1) es toda solucion {X,,Y,} de {S = 0, N = 0}. Definiendo
[5]
(XL AFLeFeFL e
X Jo Y ), X Jo oY J,
Yy, asimismo

T=b+c,D=bc—ag, A=T?-4D 3)
Se tiene que
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) T <0,A<0,el SS es focoestable (oscilaciones amortiguadas)
SiD>0 (4)

T>0,A <0, el SS es foco inestable (ciclo limite)
El teorema de Poincaré-Bendixson [6-8] precisa que si un foco inestable se puede
rodear de una linea cerrada I" a través de la cual el flujo del campo ()2 Y) se cumple [9]
p.. = (X,Y)n <0 (5)

siendo n un vector normal a I' en sentido hacia el exterior del recinto limitado por I', y
cumpliéndose el signo = de (5) sélo en un numero finito de puntos de I, dentro del citado

recinto existe al menos un ciclo limite de (1)

OSCILADOR AMORTIGUADO

El esquema basico de polimerizacion sera [2]

— R, Iniciacion,cuyoorden parcial respecto
al monomero se definira luego

kP
R, + M > Ry Propagacion pasoa paso ()

R, + R, —X 5 polimero Terminacion por recombinacion

Para mayor sencillez, se denotardn como variables oscilatorias

x=-M y_R conR=>R (7
M, R, i=1

Mo ¥ Ro son los correspondientes valores estacionarios (lo que implica que en el estado
estacionario seran Xo =1, Yo =1).

Planteada la ecuacion para R, por suma de las correspondientes Ri, se tiene

R=v_ —k,_R? ®)

inic ~ Mer

Usualmente [1], la contribucidn de la iniciacién a R, Vi, suele ser o bien de orden

cero respecto de M (por ejemplo, en iniciacién fotoquimica); o bien de orden uno respecto de
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M (en la iniciacion con iniciador); o bien de orden dos respecto de M (iniciacion térmica). El

caso de orden uno, con iniciador es frecuente [1,10].

Inmediatamente se observd que la iniciacion de orden cero no conduce a oscilaciones:

coN Vinic = ki, €s Y =u, — k., R? dandoa=0,D=bc,yA=(b+c)’-4bc=(b—c)*>0. Por

ter

otra parte, se probo seguidamente la iniciacién de orden uno, cuyas ecuaciones cinéticas son:

M = -kM - kMR
R = kM — kKR
: R =kM -k, R? )
R, =k kM — K k,M — k

0 bien, teniendo en cuenta (7), y las notaciones

M
((:k_’B:k_—o, :k
' 'R P

0

X = —aX — pXY

R,, ® = k,R, (10)

i (11)
Y = BX — oY’

Es este sistema basico el que serd modificado [3], tanto en esta seccion como en la

siguiente, en busca de comportamiento oscilatorio.
Obviamente, la forma de X en el sistema (11) no permite sistema estacionario, ya que

X <0 para X, Y > 0. Se decidié pues afiadir una “funcién historial” H(X) que afecta al

monomero [11]:

X = H(X) — aX — pXY =S(x,y)

. (12)
Y = BX — Y% = N(X,Y)
En el sistema estacionario se cumplirian X, =1, Y, = 1, y ademas
H =a+
o=+ P (13)
p=o
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Por otra parte, segun (2)

{c:Hg)—a—p=Hg—Ho, g=-p

a=f=w, b=-2w (14)

La funcién H = 0 no es aceptable por no cumplir (13): no habra sistema estacionario.
La siguiente posibilidad mas simple sera H = A (un flujo de entrada de mondmero, o bien una
produccién de orden cero de dicho mondmero a partir de un precursor). Con H= A, H( =0,

Ho = A =o +p, y por (14), de (3) resultan:

T=—(a+p+2w) <0, D =w(ax+3p) >0, D= (a —2w)* +p*+2ap—8wp (15)

Puede observarse que, debido al término -8wp, es posible tener A < 0, el sistema
estacionario serd foco estable y ocurriran oscilaciones amortiguadas [12] en M y en R. Por
ejemplo, esto puede ocurrir si o = 2 (es decir, My = ki/dk; = Ro/2), y ademés p < 4 o (es
decir kp < 4ky).

Resumiendo estas consideraciones, un primer mecanismo capaz de dar oscilaciones
amortiguadas, sera
F > M
M R,

R,+M >R,
R, +M — >R, (16)

R, + R, ——> polimero

conducente a ecuaciones cinéticas de la forma
X = A-aX - pXY
, P (17)
Y =BX - oY?

Tras obtenerse este sencillo resultado, se paso a investigar la modificacion de (11) para

lograr ciclo limite.
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OSCILADOR DE CICLO LIMITE

Siguen siendo vélidas las consideraciones hechas en la precedente seccion, hasta las
ecuaciones (14), inclusive. Ya que H = 0 no proporciona estado estacionario, y que H = A
solamente puede llevar a un caso de foco estable, se pens6 en funciones H(x) mas
complicadas, para tener estado estacionario foco inestable. Una funcién del tipo H = AX
puede proceder de un proceso autocatalitico [13] que implique al monGmero; pero no es per se
suficiente, pues serian Hy=A, H, =4, c =0, T = -20 < 0. Igualmente, la combinacion H = A
+ AX (flujo de entrada + autocatalisis) conduceaH.=A+A, Ho=A,c=-3, T=-A-20 <0.

En ciertos modelos de osciladores se introduce un término de tipo Michaelis-Menten
[14], H = -BX/(X + 1), que a pesar de dar Hy = -B/2, H"y = -B/4, ¢ = (B/4) > 0 no es suficiente
por si solo ya que Hy < 0, se incumple (13): no habré sistema estacionario. Tampoco es
fructifera la combinacion (flujo de entrada + término Michaelis), esto es, H = A — [Bx/(x +
1)]; con ello Hy = A — (B/2), y como Hy = oo + p > 0, A > (B/2) > (B/4), Ho = -Bl4,y c =
(B/4) - A, <0;sera T<0.

Por ultimo se ensayd la combinacion de autocatalisis + Michaelis [14]: H = AX —

(BX)/(X + 1). Las ecuaciones cinéticas (12) resultan:

X = yX — 2% _ oxy = pX(f - Y)
X +1 (18)
M = X — oY?

con y=A—a (>0 para que exista estado estacionario), y siendo f(x) = (1/p)[y — {B/(x+1)}].

En el sistema estacionario,

_B
r=orP (19)
=w
y las definiciones (2) dan
- B o=
s -F 20)
a=f=o b=-20
por lo cual segun (3)
T:%—Za), D:a)(p—g) (21)
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Para T > 0 se requiere B > 8w; para D > 0, B < 2p. Ambas condiciones son
compatibles solo si p > 4o (en el caso amortiguado se sugeria lo opuesto, p < 4w). En
condiciones ligeramente supercriticas de T >0, B> 8w, T>0,y A=T?—4D ~ -4D < 0: el
sistema estacionario sera foco inestable.

A modo de ejemplo concreto (en las unidades adecuadas) =1, ® =1,y=10,5 B =9,
p =6, resultando T=0,25>0,D=15>0, A=-95/16<0.

Para disefiar la construccion del recinto de Poincaré-Bendixson [8,9] es preciso
examinar las nuliclinas de (18). Las nuliclinas Y = 0 es la pardbola X = Y% e Y = X,

mondtona creciente. La nuliclina X = 0 tiene la rama X = 0 (“el sistema (18) es degenerado™)

y la rama

1 B
Y = f(x) :E(y_mJ (22)

la cual posee asintota horizontal en Y = y/p; también, para X =0, Y = (y — B)/p (requeriria que

7> B).

X

Figura 1. Plano de fases del sistema (18).

Esta situacion de las nuliclinas puede verse en la Figura 1. A la vista de la misma, la
construccion de la frontera I' del recinto de Poincaré-Bendixson alrededor del sistema

estacionario foco inestable, se inicia en pl (X, = 1,0). El tramo [p1p.][ es la curva
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_\P
Y = —1 o (23)
2. p
El vector normal exterior a este tramo es n Y',-1 = o /X +Y /pX ,-1, yel

flujo del campo de (18)

Pue = (XYM =0 VX +Y £ =Y —0X +a¥? =0 VX +Y [ -JX] (24)
(téngaseencuentaqueB:m,yque\}:a)X—a)YZ:a) X +Y JX =Y ). Dado que en

[psp2[ la nuliclina Y = 0 (Y = f(x)), VX = f(x), asf que pess < 0 ( = en py).

El tramo se prolonga hasta que (23) corta a X =0 en p,. Esta interseccion

necesariamente existe, ya que (23) es mondtona creciente mientras que en (22) tiene asintota

horizontal.
Desde la interseccion p; se prosigue en vertical hasta alcanzar en ps la nuliclina Y =0.
En [pzps[, N =(1,0), X <0 (= enpy), Y Pesc = X < 0 (= en p,).
El tramo horizontal [psps llega hasta la wvertical X = Xc = 1. En él,

N=(01),Y <0(=enp,), y P, =Y <O.
Para el tramo [p4ps[ se eligi6 la curva
Y :Yp3X’“’ P = YPAX‘“’ P (25)
El vector normal a este tramo, exterior al recinto, es ﬁ(—Y,l) = —oY/pX,1,vyel

flujo pesc vale
pesc:[kiY.j-h.:_a)Y f-Y +a)X—a)Y2=a) -Y.f + X (26)

Dado que en [p4ps[, la curva (25) esta por encima de la nuliclina Y = 0 (en efecto, la

compatibilidad de T >0 con D > 0 exige p > 4o, > 2a — (o/p) < (1/2); al seraqui X < X, =1
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(=en ps), es X7 > X al seraqui Y, =Y, >Y, =1, Yy =Y, X? > X'P > {X),
sera Y > VX; luego Y.f(x) > f(x).VX. Como también la nuliclina X =0 (Y = f(x)) esta por

encima, o corta (en pg4), de la nuliclina Y = 0 (Y = +X), sera f(x) > VX (= en ps), asi que

f(x).VX > X; por consiguiente, Y.f(x) > X, con ello pesc < O en [psps[. El punto ps es la
interseccion de (25) con X = 0. El tramo vertical [psps[, hasta alcanzar el eje de las x, posee
n = (-1,0), X >0 (=enps), yenél pesc = X < 0 (=en ps). Cierra el recinto el tramo de eje

X, [Pspa[. En €1, 1 = (0,~1), Y > O, por tanto pesc = - Y < 0.

Si el sistema estacionario encerrado por I = pip2pspsPsPsPr €S foco inestable, el
teorema de Poincaré-Bendixson [7,3] asegura que en el recinto cuya frontera es I" existe al
menos un ciclo limite del sistema (18).

Para el ejemplo numérico arriba aludido, un tanteo permite calcular aproximadamente
p1 = (1,0), p2 ~ (18,92,1,675), ps ~ (18,92, 4349), ps ~ (1, 4,349), ps ~ (3,65.10°%, 0,2505), pg ~
(3,65.10%,0).

Un posible mecanismo acorde a las consideraciones realizadas en esta seccion, seria

.................. S 27)
R, + R; —=— polimero
J+M —52M

Z, —>27

Z+M L

z s

Admitiendo que siempre Z = 0, con las notaciones (7), y las relaciones

A=kdia=u;y=KkJ —U; p=K,Ry; B=(UM)/R;; ®=K,Ry; B =(U,Z,)/ M, (28)
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y suponiendo k4 = ksMo, las ecuaciones cinéticas de (27) son de la forma (18). Para obtener el
término de Michaelis, en lugar de las tres Gltimas etapas [15] de (27) puede usarse también el
bloque (“‘enzimatico”)

U+M v

k (29)
vV —>U
Suponiendo siempre U = 0, con las notaciones
f=u+V, B= 8 (30)
MO

y suponiendo ks = ks.Mo, se obtiene un término de la forma —-BX/(X + 1).

RESUMEN Y CONCLUSIONES

Partiendo de un sencillo mecanismo de polimerizacion, con iniciacion mediante
iniciador, propagacion por adicion de mondémero paso a paso, Yy terminacion por
recombinacion bimolecular de propagadores, a) cuando dicho mecanismo es suplementado
por un flujo constante de entrada de mondmero, surge la posibilidad de oscilaciones
amortiguadas en las concentraciones de monémero y total de propagadores, b) cuando dicho
mecanismo es suplementado con una produccion autocatalitica de mondémero y una
desaparicion de este por reaccidn con una tercera sustancia (Z) con flujo de entrada y de
salida a través del sistema (o alternativamente a dicha desaparicidon, por una degradacién
enzimatica del mondmero), surge la posibilidad de oscilaciones de ciclo limite en las

concentraciones de mondmero Y total de propagadores.

BIBLIOGRAFIA

1. Laidler KJ “Cinética de las reacciones”. Editorial Alhnambra, Madrid 1971

2. Katime I “Quimica Fisica Macromolecular”. Servicio editorial de la Universidad del Pais Vasco,
Bilbao 1994; Moore WJ “Quimica Fisica”. Editorial Urmo, Bilbao 1977

3. Pérez Ortiz JA. Tesis Doctoral. Universidad del Pais Vasco, Bilbao 1991

4. Volkenstein B “Biofisica”. Editorial Mir, Moscu 1985

5. Piskunov N “Calculo diferencial e integral”. Editorial Montaner y Simén, Barcelona 1970

6. Poincaré H, Acta Math., 7, 254 (1985)

7. Pontryagin LS “Ecuaciones diferenciales ordinarias”. Editorial Aguilar, Madrid 1973

325 Rev. Tberoam. Polim., 11(5), 317-326 (2010)



Revista Iberoamericana de Polimero Volumen 11(5), Septiembre de 2010
Katime y Pérez Ortiz Oscilaciones amortiguadas ¥y ciclo limite

8. Tyson JJ, Light JC, J. Chem. Phys., 59(8), 4164 (1973)

9. La Salle J, Quart. Appl. Chem., 7(1), 1 (1949)

10. Dostal H, Kofp LV, Z. Physik Chem., 32B, 117 (1936)

11. Katime I, Pérez Ortiz JA, Rev. Iberoam. Polim.,

12. Balslev I, Pegn H, Faraday Symp. Chem. Soc., 9, 233 (1973)
13. Nicolas G, Portnun J, Chem. Rev., 73(4), 365 (1973)

14. Selkov GG, Eur. J. Biochem., 4, 79 (1968)

15. Gray BF, Aarons LF, Faraday Symp. Chem. Soc., 9, 129 (1974)

326 Rev. Tberoam. Polim., 11(5), 317-326 (2010)



