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INTRODUCCIÓN 

 

 En este trabajo se ha tomado un sencillo prototipo de polimerización [1,2] alongada 

por adición de monómero paso a paso, y habida cuenta de las peculiaridades de este tipo de 

reacciones, se ha explorado qué mínimas modificaciones [3] podrían hacérsele a fin de 

obtener un comportamiento oscilatorio, tanto de oscilación amortiguada como de ciclo límite. 

 La sección segunda resume la teoría general involucrada, en la sección tercera se 

plantea y analiza la variante de oscilación amortiguada; y en la cuarta, la de ciclo límite. 

 

TEORÍA GENERAL 

 

 Por su mayor simplicidad [4], el tratamiento se hace en dos variables {x,y} 

respectivamente relacionadas con la concentración del monómero (M) y con la concentración 

total de propagadores (
1

i

i

R R ), cuya evolución se rige por ecuaciones cinéticas 

      

•

•

X = S(X,Y)

Y = N(X,Y)

    (1) 

 Un estado estacionario de (1) es toda solución {Xo,Yo} de {S = 0, N = 0}. Definiendo 

[5] 

    
0 0 0 0

, , ,
S S N N

c y a b
X Y X Y

  (2) 

y, asimismo 

    2, , 4T b c D bc ag T D    (3) 

 Se tiene que 
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T < 0, Δ < 0, el SS es focoestable (oscilaciones amortiguadas)

Si D > 0
T > 0, Δ < 0, el SS es foco inestable (ciclo limite)

 (4) 

 

 El teorema de Poincaré-Bendixson [6-8] precisa que si un foco inestable se puede 

rodear de una línea cerrada  a través de la cual el flujo del campo ( , ),X Y  se cumple [9] 

     ( , ). 0escp X Y n      (5) 

siendo n  un vector normal a  en sentido hacia el exterior del recinto límitado por , y 

cumpliéndose el signo = de (5) sólo en un número finito de puntos de , dentro del citado 

recinto existe al menos un ciclo límite de (1) 

 

OSCILADOR AMORTIGUADO 

 

 El esquema básico de polimerización será [2] 

 

   

p

p

tr

1

k

1 2

k

2 3

k

i j

R Iniciacion,cuyoorden parcial respecto

al monomerosedefinira luego

R + M R

R + M R
Propagacion pasoa paso

...............................

...............................

R + R polimero Terminacion por recombinacion

  (6) 

Para mayor sencillez, se denotarán como variables oscilatorias 

    
10 0

, , i

i

M R
X Y con R R

M R
    (7) 

M0 y R0 son los correspondientes valores estacionarios (lo que implica que en el estado 

estacionario serán X0 = 1, Y0 = 1). 

 Planteada la ecuación para ,R por suma de las correspondientes ,iR  se tiene 

     
2

inic terR v k R      (8) 

 Usualmente [1], la contribución de la iniciación a ,R  vinic, suele ser o bien de orden 

cero respecto de M (por ejemplo, en iniciación fotoquímica); o bien de orden uno respecto de 
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M (en la iniciación con iniciador); o bien de orden dos respecto de M (iniciación térmica). El 

caso de orden uno, con iniciador es frecuente [1,10]. 

 Inmediatamente se observó que la iniciación de orden cero no conduce a oscilaciones: 

con vinic = ki, es 2 ,i terY u k R   dando a = 0, D = bc, y = (b + c)
2
 - 4bc = (b – c)

2
  0. Por 

otra parte, se probó seguidamente la iniciación de orden uno, cuyas ecuaciones cinéticas son: 

   

•

i p

1 1
2

2 1 2 2

M = -k M - k MR

....................................................

....................................................

i p

i ter

p p ter

R k M k k R

R k M k R
R k k M k k M k k R

  (9) 

 

o bien, teniendo en cuenta (7), y las notaciones 

 

    , , ,o
i i p o ter o

o

M
k k p k R k R

R
   (10) 

     
2

X X pXY

Y X Y

     (11) 

 

 Es este sistema básico el que será modificado [3], tanto en esta sección como en la 

siguiente, en busca de comportamiento oscilatorio. 

 Obviamente, la forma de 
•

X  en el sistema (11) no permite sistema estacionario, ya que 

•

X 0  para X, Y > 0. Se decidió pues añadir una “función historial” H(X) que afecta al 

monómero [11]: 

    
2

( ) ( , )

( , )

X H X X pXY S x y

Y X Y N x y

   (12) 

 

 En el sistema estacionario se cumplirían Xo = 1, Yo = 1, y además 

      
oH p

    (13) 
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 Por otra parte, según (2) 

    
´ ´

0 0 0 ,

, 2

c H p H H g p

a b
   (14) 

 

 La función H = 0 no es aceptable por no cumplir (13): no habrá sistema estacionario. 

La siguiente posibilidad más simple será H = A (un flujo de entrada de monómero, o bien una 

producción de orden cero de dicho monómero a partir de un precursor). Con H = A, H´0 = 0, 

Ho = A =  + p, y por (14), de (3) resultan:  

 

    2 2( 2 ) 0, (2 3 ) 0, ( 2 ) 2 8T p D p D p p p  (15) 

 

 Puede observarse que, debido al término -8 p, es posible tener  < 0, el sistema 

estacionario será foco estable y ocurrirán oscilaciones amortiguadas [12] en M y en R. Por 

ejemplo, esto puede ocurrir si  = 2  (es decir, Mo = ki/4kt = R0/2), y además p < 4  (es 

decir kp < 4kt). 

 Resumiendo estas consideraciones, un primer mecanismo capaz de dar oscilaciones 

amortiguadas, será 

     

i

p

p

ter

k

1

k

1 2

k

2 3

k

i j

F M

M R

R + M R

R + M R

..............................

..............................

R + R polimero

    (16) 

 

conducente a ecuaciones cinéticas de la forma 

     

•

•
2

X = A - αX - pXY

Y = βX - ωY

     (17) 

 

 Tras obtenerse este sencillo resultado, se pasó a investigar la modificación de (11) para 

lograr ciclo límite. 
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OSCILADOR DE CICLO LÍMITE 

 Siguen siendo válidas las consideraciones hechas en la precedente sección, hasta las 

ecuaciones (14), inclusive. Ya que H = 0 no proporciona estado estacionario, y que H = A 

solamente puede llevar a un caso de foco estable, se pensó en funciones H(x) más 

complicadas, para tener estado estacionario foco inestable. Una función del tipo H = X 

puede proceder de un proceso autocatalítico [13] que implique al monómero; pero no es per se 

suficiente, pues serían H0 = , H´o = , c = 0, T = -2  < 0. Igualmente, la combinación H = A 

+ X (flujo de entrada + autocatálisis) conduce a Hc = A + , H´0 = , c = -a, T = -A - 2  < 0. 

 En ciertos modelos de osciladores se introduce un término de tipo Michaelis-Menten 

[14], H = -BX/(X + 1), que a pesar de dar H0 = -B/2, H´0 = -B/4, c = (B/4) > 0 no es suficiente 

por sí solo ya que H0 < 0, se incumple (13): no habrá sistema estacionario. Tampoco es 

fructífera la combinación (flujo de entrada + término Michaelis), esto es, H = A – [Bx/(x + 

1)]; con ello H0 = A – (B/2), y como H0 =  + p > 0, A > (B/2) > (B/4), H´0 = -B/4, y c = 

(B/4) - A, < 0; será T < 0. 

 Por último se ensayó la combinación de autocatálisis + Michaelis [14]: H = X – 

(BX)/(X + 1). Las ecuaciones cinéticas (12) resultan: 

    

2

( )
1

BX
X X pXY pX f Y

X

M X Y

   (18) 

con –  (> 0 para que exista estado estacionario), y siendo f(x) = (1/p)[  – { /(x+1)}]. 

En el sistema estacionario, 

      2
p

     (19) 

y las definiciones (2) dan 

     
,

4

2

B
c g p

a b

    (20) 

por lo cual según (3) 

     2 , ( )
4 2

B
T D p    (21) 
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 Para T > 0 se requiere B > 8 ; para D > 0, B < 2p. Ambas condiciones son 

compatibles solo sí p > 4  (en el caso amortiguado se sugería lo opuesto, p < 4 ). En 

condiciones ligeramente supercríticas de T > 0, B  8 , T  0, y  = T
2
 – 4D  -4D < 0: el 

sistema estacionario será foco inestable. 

 A modo de ejemplo concreto (en las unidades adecuadas)  = 1,  = 1,  = 10,5, B = 9, 

p = 6, resultando T = 0,25 > 0, D = 1,5 > 0,   = -95/16 < 0. 

 Para diseñar la construcción del recinto de Poincaré-Bendixson [8,9] es preciso 

examinar las nuliclinas de (18). Las nuliclinas 
•

Y = 0  es la parábola X = Y
2
, e Y = x, 

monótona creciente. La nuliclina 
•

X = 0  tiene la rama X = 0 (“el sistema (18) es degenerado”) 

y la rama 

     
1

( )
1

B
Y f x

p X
    (22) 

la cual posee asíntota horizontal en Y = /p; también, para X = 0, Y = (  – /p (requeriría que 

 > ). 

 

Figura 1. Plano de fases del sistema (18). 

 

 Esta situación de las nuliclinas puede verse en la Figura 1. A la vista de la misma, la 

construcción de la frontera  del recinto de Poincaré-Bendixson alrededor del sistema 

estacionario foco inestable, se inicia en p1 (Xo = 1,0). El tramo [p1p2[ es la curva 
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1

1

2

x
p

Y

p

     (23) 

 El vector normal exterior a este tramo es ´, 1 / , 1 ,n Y X Y pX  y el 

flujo del campo de (18) 

2( , ).escp X Y n X Y f Y X Y X Y f X   (24) 

(téngase en cuenta que , y que 2Y X Y X Y X Y ). Dado que en 

[p1p2[ la nuliclina 
•

Y = 0  (Y = f(x)), ( ),x f x  así que pesc  0 ( = en p1). 

 El tramo se prolonga hasta que (23) corta a 
•

X = 0  en p2. Esta intersección 

necesariamente existe, ya que (23) es monótona creciente mientras que en (22) tiene asíntota 

horizontal. 

 Desde la intersección p2 se prosigue en vertical hasta alcanzar en p3 la nuliclina 
•

Y = 0 . 

 En [p2p3[, 
•

n = (1,0), X 0  (= en p2), y pesc = 
•

3X 0 (= en p ).  

 El tramo horizontal [p3p4[ llega hasta la vertical X = XC = 1. En él, 

3(0,1), 0 ( ), 0.escn Y en p y p Y  

 Para el tramo [p4p5[ se eligió la curva 

     
3 4

/ /p p

p pY Y X Y X     (25) 

 El vector normal a este tramo, exterior al recinto, es ( ,1) / ,1 ,n Y Y pX  y el 

flujo pesc vale 

 

  2, . .escp X Y n Y f Y X Y Y f X   (26) 

 

 Dado que en [p4p5[, la curva (25) está por encima de la nuliclina 
•

Y = 0  (en efecto, la 

compatibilidad de T > 0 con D > 0 exige p > 4 , > 2a  ( /p) < (1/2); al ser aquí X  Xo = 1 
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( = en p4), es X
/p

  ;X  al ser aquí 
4 3 4

/ /

p p o (25)Y = Y > Y = 1, Y ),p p

pY X X X  

será Y > X; luego Y.f(x) > f(x). X. Como también la nuliclina 
•

X = 0  (Y = f(x)) está por 

encima, o corta (en p4), de la nuliclina 
•

Y = 0  (Y = X), será f(x)  X (= en p4), así que 

f(x). X  X; por consiguiente, Y.f(x) > X, con ello pesc < 0 en [p4p5[. El punto p5 es la 

intersección de (25) con 
•

X = 0 . El tramo vertical [p5p6[, hasta alcanzar el eje de las x, posee 

( 1,0), 0n X  (= en p5), y en él pesc = -
•

X 0  (= en p5). Cierra el recinto el tramo de eje 

X, [p6p1[. En él, (0, 1), 0n Y , por tanto pesc = -
•

Y 0.  

 Si el sistema estacionario encerrado por  = p1p2p3p4p5p6p1 es foco inestable, el 

teorema de Poincaré-Bendixson [7,3] asegura que en el recinto cuya frontera es  existe al 

menos un ciclo límite del sistema (18). 

 Para el ejemplo numérico arriba aludido, un tanteo permite calcular aproximadamente 

p1 = (1,0), p2  (18,92,1,675), p3  (18,92, 4349), p4  (1, 4,349), p5  (3,65.10
-8

, 0,2505), p6  

(3,65.10
-8

,0). 

 Un posible mecanismo acorde a las consideraciones realizadas en esta sección, sería 

    

1

2

3

4

1

1 2

2 3

0

..............................

..............................

polimero

2

i

p

p

ter

k

k

k

k

i j

k

k

k

k

M R

R M R

R M R

R R

J M M

Z Z

Z M

Z

     (27) 

 Admitiendo que siempre 0,Z  con las notaciones (7), y las relaciones 

1 1 0 0 2 0 0; ; ; ; ( ) / ; . ; ( ) /i i p i o o terk J u k J u p k R u M R k R u Z M  (28) 
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y suponiendo k4 = k3M0, las ecuaciones cinéticas de (27) son de la forma (18). Para obtener el 

término de Michaelis, en lugar de las tres últimas etapas [15] de (27) puede usarse también el 

bloque (“enzimático”) 

     
5

6

k

k

U M V

V U
     (29) 

 Suponiendo siempre 0,U  con las notaciones 

     6

0

,
k

u V B
M

     (30) 

y suponiendo k6 = k5.M0, se obtiene un término de la forma –BX/(X + 1). 

 

RESUMEN Y CONCLUSIONES 

 

 Partiendo de un sencillo mecanismo de polimerización, con iniciación mediante 

iniciador, propagación por adición de monómero paso a paso, y terminación por 

recombinación bimolecular de propagadores, a) cuando dicho mecanismo es suplementado 

por un flujo constante de entrada de monómero, surge la posibilidad de oscilaciones 

amortiguadas en las concentraciones de monómero y total de propagadores, b) cuando dicho 

mecanismo es suplementado con una producción autocatalítica de monómero y una 

desaparición  de este por reacción con una tercera sustancia (Z) con flujo de entrada y de 

salida a través del sistema (o alternativamente a dicha desaparición, por una degradación 

enzimática del monómero), surge la posibilidad de oscilaciones de ciclo límite en las 

concentraciones de monómero y total de propagadores. 
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