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INTRODUCCION

La reaccion de Belousov-Zhabotinsky, en diversas variantes, es una de las reacciones
oscilantes mas investigada [1-4]. Un clasico modelo para sus oscilaciones es el esquema
llamado “oscilador de Oregon” (Oregonator), propuesto por Field, Kéros y Noyes [5]: consta
de las etapas

@ A+B —> X

(2) X+Y L

(3) B+X 52X +Z
4) 2X s

(B) Z-—S5>Y

En la interpretacion original, A, B, X, Y, Z son diversas especies del complejo
mecanismo redox de la reaccion de Belousov-Zhabotinsky.

Aunque las reacciones de polimerizacion no poseen caracteristicas redox, se ha
intentado aplicar este esquema formal —es decir, las ecuaciones diferenciales correspondientes-
para describir una “polimerizacion oscilante”. De hecho, el grupo investigador de Pojman y
colaboradores ha informado de haber tenido éxito al acoplar experimentalmente la reaccion de
Belousov-Zhabotinsky como iniciadora de polimerizacion, por adicién, del acrilonitrilo [6,7].
Un primer intento de conexion [8] se basé en la identificacion directa del mondémero con la
variable X del oscilador, y de alguno de los monomeros que contengan X en las ecuaciones de
éste como proveniente de una polimerizacion. En este trabajo se realizara una identificacién

mas estrecha de las etapas (1)-(5) con posibles procesos asociados a la polimerizacion.
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MECANISMO

El modelo Oregonator suele plantearse en tres variables {x,y,z}, tomando A y B como

constantes. Para aprovechar el aparato matematico desarrollado para dos dimensiones [9],

suele reducirse al plano de fases {X,Z} mediante la suposicion Y = 0. No obstante, las

ecuaciones diferenciales asi obtenidas presentan una asintota vertical X =k, en el plano {x,y},
de la nuliclina X = 0. Con el fin de evitar esta peculiaridad, se puede sustituir (1) por

(la) A —>X
(1b) Y >

Este desdoblamiento conduce a las ecuaciones del “multivibrador de Rossler” [10],
mas intuitivamente analizable que el Oregonator original.

Las ecuaciones diferenciales del modelo (1a), (1b), (2), (3), (4), (5) son
X = A— kXY + BX —2k,X?
6) 1Y = —kY — kXY + kZ

Z =BX - kZ
y admitiendo Y = Osiempre, resultan
X = A KKAX L ay o x?
©) k, + k,X
Z=BX —kzZ

Con el fin de definir un pequefio parametro ., pueden hacerse las notaciones

©® u=2,z-uA-2 B-
Z, u

X o

Con los cuales el sistema (7) se escribe
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u>.( Ao K,k UX

bX — gX? = §(x,u
(9) k, + k,X ’ a (x.w)

U =bX — ku = N(x,U)

Seguidamente se procedera a aproximar a este modelo abstracto las ecuaciones
cinéticas procedentes de procesos posibles en una polimerizacion. En esta, la concentracion de
monomero se considerard constante y se englobarda en las constantes cinéticas
correspondientes [11].

Iniciacién. La presente contribucion del mondmero se engloba en o
(10) o->R
Propagacion, por adicion paso a paso del mondmero, que participa en todos los

primeros miembros de (11) y cuya contribucion se engloba en la constante p.

Rf ——R;

Los propagadores terminan por recombinacion entre si
(12) 2R} ——F,

0 por recombinacién con una forma isémera R, :

(13) R +R —“> P

Por ejemplo, podria ser [12]
R*=-CH,-CH*-C=N
0 bien

R =-CH,-C-C=N
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Para los restantes propagadores, la terminacion es por transferencia al monémero, pero
rindiendo al hacerlo la forma R (pudieran denominarse “reiniciaciones”):

La contribucion del monomero, que participa en todos los primeros miembros de (14),
se engloba en la constante o:
R —2>P +R’
(14) R, ——> P, + R}

Por su parte, R" puede transferir su reactividad a un tercer cuerpo C (en exceso):

R; + C —> C* + monomero
(15)
2C* - C,

y para la necesaria autocatalisis, esta puede ser ejercida por la forma dimera D (constante, por
exceso)

(16) D+R —3R

Denotando R’ = X, R} =Y, ZRJ = Z, las ecuaciones cinéticas de (10)-(16) son

j=2

X =a - pX — 2k X? — kXY + 2DX

17) 1Y = —KXY + 0Z - CY

Z = pX - wZ

las cuales, con las designaciones

(18) A=a,2D-p=B,k =k, k =k,,C=k, p=B, o=k

se forman isomorfas a las ecuaciones (6), siendo susceptibles del acoplamiento Y = 0 (donde

las ecuaciones (7)) y la eleccion del pequefio parametro (notaciones (8)), resultando el sistema
(9). Por consiguiente, se propone la denominacion Polioregonator para el mecanismo (10)-
(16).

La identificacion de R™ con una forma isémera del primer radical propagador, no es

imprescindible y si se impone que en las etapas (14) los radicales R;transfieran su reactividad,
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en lugar de al mondmero a un precursor de R’,cuya concentracion se suponga constante y

englobada en ®. Pojman y colaboradores [2,13] mencionan los radicales malonilo,

participantes en la reaccion Belousov-Zhabotinsky acoplada a la polimerizacion a través de una

especie comdn R’ ; nétese que para ésta se supone Y = 0.
Asimismo parece posible que la autocatélisis pueda ser impulsada por formas de grado

de polimerizacion superior al dimero D. A continuacion se volvera al modelo abstracto (9),

analizandolo matematicamente.

ANALISIS
El vector del campo de direcciones [14], o vector velocidad de fase, asociado al
sistema (9), es (X Uj =[d(x,u)/u, N(x,u)]. Para x — 0, este vector es paralelo al eje X (y las

trayectorias de fase, a las cuales dicho vector es tangente, también son paralelas al eje X),

excepto en un entorno de orden u de la curva caracteristica 6 x,u =0. La velocidad

>'( =0 x,u /u,ypara 4 — 0, | X | — oo (salto brusco del punto de fase, paralelamente al eje

X), excepto en un entorno de la caracteristica o(x,u) = 0.

u

S8

- e
Il

Figura 1. Plano de fases del sistema (9): estado estacionario inestable.
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En el caso de que la nuliclina caracteristica posea signoidalidad (un minimo y un

maximo), y que la nuliclina u = 0 (la recta u = bX/ks) el corte es un unico punto (el estado

estacionario), (Xo,Yo) Situado entre el minimo y el méaximo, la inspeccion del vector campo en
las inmediaciones del SS muestra que este es inestable: trayectorias iniciadas cerca del sistema

estacionario tienden a alejarse de él (véase la Figura 1).

La sigmoidalidad de X = 0 permite entonces intuir (véase la Figura 2) la existencia de
un ciclo limite (o ciclo de histérisis), para © — 0, HLH L H, entre ambas ramas estables de la

caracteristica. Al recorrer el punto de fase dicho ciclo limite, las concentraciones X y U

(R, z R;) efectuarian oscilaciones sostenidas [8,15].
j=2

u
u=0
L H
@
i\
L
H
=0
AY

Figura 2. Plano de fases del sistema (9): ciclo limite.

La prueba de existencia del ciclo limite en torno al sistema estacionario inestable puede
fundamentarse mas analiticamente construyendo la frontera FGF'G'F de un recinto de no-
retorno (segun el teorema de Poincaré-Bendixson) para las trayectorias de fase (véase la
Figura 3): el examen del campo en dicha frontera muestra que las trayectorias que entran al

recinto ya no pueden salir de él [8].
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Figura 3. Plano de fases del sistema (9): recinto de Poincaré-Bendixson.

La inestabilidad del sistema estacionario se puede determinar también por el método de
Lyapunov [16]. En el ejemplo numérico concreto (con los parametros en unidades adecuadas)
4X =0,06+84X — %
(19) X +1
U =12,92X - u

-2X?

El sistema estacionario es X, = 1, U, = 12,92. La nuliclina caracteristicaes X =0:

(20)  u=(X +1)(% ~8,4 - 2X)

con

(2) u = ;I_u =6,4 - 4x - 0)’:)26
X

Para X = 0,1, u” = 0 (minimo). En el sistema estacionario, para x = 1, u” = 2,34 > Q.
Para X — oo, U — —oo. Luego el sistema estacionario estad situado entre el minimo y el

maximo.

Después de linealizar (14) en torno al sistema estacionario, la matriz secular vale
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117 -0,5
(22)  My| u U
12,92 -1

cuyo determinante vale D¢ = (5,29/p) > 0 siempre, y cuya traza T, = (1,12/u) — 1 es T, > 0 si
pn < perit = 1,17, originando un SS del tipo foco inestable. Al disminuir p por debajo de it
acaece la bifurcacion de Hopf y surge un ciclo limite.

Cuando la iniciacion (10) es lenta (por ejemplo, comparandola con la produccion

autocatalitica de R’ en (16), si se aproxima a ~ 0 se tiene el modelo “degenerado” [18]:

,u;( ___koksuX
(23) kl + kZX

U =bX - kU

+bX — gX?

para el cual la caracteristica X = 0 tiene dos curvas: el tramo del eje de lasu, X = 0; y la
paradbola U = [(k; + koX)/koks] (b — gX) quien corta el eje de las X en X = b/q, y posee un
maximo en X = (kob — k1q)/2k>q (si kob > k). Para X = 0, u = kib/koks. Si b(kzb - kiq) >
[kob + kiq]%/2ks, el sistema estacionario esta situado antes del méximo. La Figura 4 refleja la
topologia de este caso degenerado, que es mas sencilla de analizar. Mostrando también la

forma HLH"L"H del ciclo limite para x# — 0.

u

-1 e
]

Figura 4. Plano de fases del sistema (23).
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Como ejemplo numérico concreto (con valores de los parametros en unidades

apropiadas), el sistema

- 2X?

ux =85%x - 2
(24) X +1

U=13X -U

tiene sistema estacionario en X, = 1, U, = 13, que para p < 1,25 es foco inestable.
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