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INTRODUCCIÓN 

 

 La reacción de Belousov-Zhabotinsky, en diversas variantes, es una de las reacciones 

oscilantes más investigada [1-4]. Un clásico modelo para sus oscilaciones es el esquema 

llamado “oscilador de Oregón” (Oregonator), propuesto por Field, Köros y Noyes [5]: consta 

de las etapas 
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 En la interpretación original, A, B, X, Y, Z son diversas especies del complejo 

mecanismo redox de la reacción de Belousov-Zhabotinsky. 

 Aunque las reacciones de polimerización no poseen características redox, se ha 

intentado aplicar este esquema formal –es decir, las ecuaciones diferenciales correspondientes- 

para describir una “polimerización oscilante”. De hecho, el grupo investigador de Pojman y 

colaboradores ha informado de haber tenido éxito al acoplar experimentalmente la reacción de 

Belousov-Zhabotinsky como iniciadora de polimerización, por adición, del acrilonitrilo [6,7]. 

Un primer intento de conexión [8] se basó en la identificación directa del monómero con la 

variable X del oscilador, y de alguno de los monómeros que contengan X en las ecuaciones de 

éste como proveniente de una polimerización. En este trabajo se realizará una identificación 

más estrecha de las etapas (1)-(5) con posibles procesos asociados a la polimerización. 
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MECANISMO 

 

 El modelo Oregonator suele plantearse en tres variables {x,y,z}, tomando A y B como 

constantes. Para aprovechar el aparato matemático desarrollado para dos dimensiones [9], 

suele reducirse al plano de fases {X,Z} mediante la suposición 0.Y  No obstante, las 

ecuaciones diferenciales así obtenidas presentan una asíntota vertical X = k, en el plano {x,y}, 

de la nuliclina 0.X Con el fin de evitar esta peculiaridad, se puede sustituir (1) por 

 

     
1k

(1a) A X

(1b) Y
 

 

 Este desdoblamiento conduce a las ecuaciones del “multivibrador de Rossler” [10], 

más intuitivamente analizable que el Oregonator original. 

 Las ecuaciones diferenciales del modelo (1a), (1b), (2), (3), (4), (5) son 
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y admitiendo 0Y siempre, resultan 
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 Con el fin de definir un pequeño parámetro , pueden hacerse las notaciones 

 

    4(8) , , , , 2a

a

Z a b q
u Z A B k

Z
 

 

 Con los cuales el sistema (7) se escribe 
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 Seguidamente se procederá a aproximar a este modelo abstracto las ecuaciones 

cinéticas procedentes de procesos posibles en una polimerización. En esta, la concentración de 

monómero se considerará constante y se englobará en las constantes cinéticas 

correspondientes [11]. 

 Iniciación. La presente contribución del monómero se engloba en : 

    
1(10) R  

 Propagación, por adición paso a paso del monómero, que participa en todos los 

primeros miembros de (11) y cuya contribución se engloba en la constante p. 
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2 3(11)
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 Los propagadores terminan por recombinación entre sí 

 

    
1 2(12) 2 tk

R P  

 

o por recombinación con una forma isómera ´ :iR  

    ´

2(13) tk

i iR R P  

 

Por ejemplo, podría ser [12] 

    2iR CH CH C N  

o bien 
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 Para los restantes propagadores, la terminación es por transferencia al monómero, pero 

rindiendo  al hacerlo la forma ´

iR  (pudieran denominarse “reiniciaciones”): 

 La contribución del monómero, que participa en todos los primeros miembros de (14), 

se engloba en la constante : 

    

´

2 2 1

´

3 3 1(14)

.............................

R P R

R P R  

 Por su parte, ´

iR puede transferir su reactividad a un tercer cuerpo C (en exceso): 

    
2

2

(15)
2
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y para la necesaria autocatálisis, esta puede ser ejercida por la forma dímera D (constante, por 

exceso) 

    
1 1(16) 3D R R  

 

 Denotando ´

1 1

2

, , ,j

j

R X R Y R Z  las ecuaciones cinéticas de (10)-(16) son 
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las cuales, con las designaciones 

 

   ´

4 2 1 5(18) , 2 , , , , ,t tA D p B k k k k C k p B k  

se forman isomorfas a las ecuaciones (6), siendo susceptibles del acoplamiento 0Y  (donde 

las ecuaciones (7)) y la elección del pequeño parámetro (notaciones (8)), resultando el sistema 

(9). Por consiguiente, se propone la denominación Polioregonator para el mecanismo (10)-

(16). 

 La identificación de ´

iR con una forma isómera del primer radical propagador, no es 

imprescindible y si se impone que en las etapas (14) los radicales jR transfieran su reactividad, 
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en lugar de al monómero a un precursor de ,iR cuya concentración  se suponga constante y 

englobada en . Pojman y colaboradores [2,13] mencionan los radicales malonilo, 

participantes en la reacción Belousov-Zhabotinsky acoplada a la polimerización a través de una 

especie común ´;iR nótese que para ésta se supone 0.Y  

 Asimismo parece posible que la autocatálisis pueda ser impulsada por formas de grado 

de polimerización superior al dímero D. A continuación se volverá al modelo abstracto (9), 

analizándolo matemáticamente. 

 

ANÁLISIS 

 

 El vector del campo de direcciones [14], o vector velocidad de fase, asociado al 

sistema (9), es 
• •

X, U =[δ(x,u)/μ,N(x,u)] . Para 0, este vector es paralelo al eje X (y las 

trayectorias de fase, a las cuales dicho vector es tangente, también son paralelas al eje X), 

excepto en un entorno de orden  de la curva característica , 0.x u  La velocidad 

•

X = δ x,u /μ , y para 0,  X  (salto brusco del punto de fase, paralelamente al eje 

X), excepto en un entorno de la característica ( , ) 0.x u  

 

 
 

Figura 1. Plano de fases del sistema (9): estado estacionario inestable. 
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 En el caso de que la nuliclina característica posea signoidalidad (un mínimo y un 

máximo), y que la nuliclina 0u  (la recta u = bX/k5) el corte es un único punto (el estado 

estacionario), (xo,yo) situado entre el mínimo y el máximo, la inspección del vector campo en 

las inmediaciones del SS muestra que este es inestable: trayectorias iniciadas cerca del sistema 

estacionario tienden a alejarse de él (véase la Figura 1). 

 La sigmoidalidad de 0X  permite entonces intuir (véase la Figura 2) la existencia de 

un ciclo límite (o ciclo de histérisis), para 0, HLH´L´H, entre ambas ramas estables de la 

característica. Al recorrer el punto de fase dicho ciclo límite, las concentraciones X y U 

( 1

2

, )j

j

R R  efectuarían oscilaciones sostenidas [8,15]. 

 

 Figura 2. Plano de fases del sistema (9): ciclo límite. 

 

 La prueba de existencia del ciclo límite en torno al sistema estacionario inestable puede 

fundamentarse más analíticamente construyendo la frontera FGF´G´F de un recinto de no-

retorno (según el teorema de Poincaré-Bendixson) para las trayectorias de fase (véase la 

Figura 3): el examen del campo en dicha frontera muestra que las trayectorias que entran al 

recinto ya no pueden salir de él [8]. 
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Figura 3. Plano de fases del sistema (9): recinto de Poincaré-Bendixson. 

 

 La inestabilidad del sistema estacionario se puede determinar también por el método de 

Lyapunov [16]. En el ejemplo numérico concreto (con los parámetros en unidades adecuadas) 

    

20,06 8,4 2
1(19)

12,92

uX
X X X

X

u X u

 

 El sistema estacionario es Xo = 1, Uo = 12,92. La nuliclina característica es 0X : 

    
0,06

(20) ( 1)( 8,4 2 )u X X
X

 

con 

    
2

0,06
(21) ´ 6,4 4

du
u x

dx X
 

 Para X = 0,1, u´ =  0 (mínimo). En el sistema estacionario, para x = 1, u´ = 2,34 > 0. 

Para , ´ .X u  Luego el sistema estacionario está situado entre el mínimo y el 

máximo. 

 Después de linealizar (14) en torno al sistema estacionario, la matriz secular vale 
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1,17 0,5

(22)

12,92 1

oM  

 

cuyo determinante vale Deto = (5,29/  > 0 siempre, y cuya traza To = (1,12/ ) – 1 es To > 0 si 

  < crit = 1,17, originando un SS del tipo foco inestable. Al disminuir  por debajo de crit 

acaece la bifurcación de Hopf  y surge un ciclo límite. 

 Cuando  la iniciación (10) es lenta (por ejemplo, comparándola con la producción 

autocatalítica de 
iR  en (16), si se aproxima   0 se tiene el modelo “degenerado” [18]: 

 

    

22 5

1 2

5

(23)

k k uX
X bX qX

k k X

U bX k U

 

 

para el cual la característica 0X  tiene dos curvas: el tramo del eje de las u, X = 0; y la 

parábola U = [(k1 + k2X)/k2k5] (b – qX) quien corta el eje de las X en X = b/q, y posee un 

máximo en X = (k2b – k1q)/2k2q (si k2b > k1q).  Para X = 0, u = k1b/k2k5.  Si b(k2b - k1q)  > 

[k2b + k1q]
2
/2k2, el sistema estacionario está situado antes del máximo. La Figura 4 refleja la 

topología de este caso degenerado, que es más sencilla de analizar. Mostrando también la 

forma HLH´L´H del ciclo límite para 0.  

 

 
Figura 4. Plano de fases del sistema (23). 
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  Como ejemplo numérico concreto (con valores de los parámetros en unidades 

apropiadas), el sistema 

 

    

28,5 2
1(24)

13

uX
X X X

X

U X U

 

 

tiene sistema estacionario en Xo = 1, Uo = 13, que para  < 1,25 es foco inestable. 
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