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INTRODUCCION

Al encontrarse los primeros ejemplos de reacciones quimicas oscilantes [1] y de
estructuras espaciales en sistemas quimicos [2] (por ejemplo ondas de concentracion), los
investigadores buscaron marcos matematicos que les permitieran encuadrar los datos
obtenidos en sus laboratorios. Las ecuaciones diferenciales ordinarias, no lineales,
suministran generalmente modelos apropiados para las oscilaciones quimicas [3], cuando se
considera a aquellas como procedentes de desarrollo de la cinética formal; las ecuaciones
diferenciales en derivadas parciales [4], cuando se las interpreta en términos de cinética de
reaccion combinada con difusiéon en el espacio, podran dar cuenta del surgimiento de
ordenaciones espaciales.

Existen desde hace algun tiempo diversos mecanismos de reaccion [5], en general
complicados, que se adaptan a modelos matematicos que predicen aparicion de oscilaciones
o/y estructuracion espacial.

Recientemente se ha sugerido [6] que el formalismo de las ecuaciones matematicas de
estos modelos podra ser dividido en diversas partes, solo algunas de las cuales procederan del
quimismo de la reaccidon principal objeto de estudio, mientras que las restantes se
consideraran provenientes de procesos colaterales, accesorios afadidos a aquella. En esta
concepcidn, practicamente cualquier reaccion podrd ser convertida en oscilante y/o en
“estructura disipativa”, sin mas que buscar la forma de agregarle los procesos colaterales
pertinentes. En este trabajo se muestra un ejemplo de aplicacion de esta idea a las reacciones

de polimerizacion.
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TEORIA GENERAL

A. Procesos de polimerizacion considerados y sus ecuaciones de velocidad [7]. En

las polimerizaciones estudiadas se consideran tres clases de etapas:
L ki
Iniciacion:  aX —— R

donde X representa al mondmero y R a los radicales propagadores y cuya velocidad es de la

forma V; ~ X%; en donde el exponente o puede adoptar los valores 0, 1 6 2.

Propagacion: R + X —% ,R
cuya velocidad es de la forma V, ~ RX
Terminacion: AR —“— productos
cuya velocidad es de la forma V; ~ RP; en este caso el parametro [ puede valer 1
(transferencia a un tercer cuerpo) 6 2 (reaccion entre propagadores [recombinacion]).
Se acostumbra a admitir la hipotesis del estado estacionario para los propagadores R,

es decir, igualar V; = BV,, de donde se despeja que R ~ X*P, 1o cual da, para la contribucion

de la polimerizacién a X, un término (o términos si o # 0) de la forma

Xpot =~k X* ~k X (1)
donde kg engloba las constantes de velocidad kp y ki (k, =k, (ki/kt )1/B .

En lo que sigue y dado que la forma de las etapas de propagacion se considera
invariante, se denotaran los diversos tipos de polimerizaciones que se citen mediante la
simbologia [a, B] [6].

En los varios sistemas de ecuaciones de osciladores que se citen podran suponerse los

(a/B)+1]

correspondientes monomios en aX* ofy X! como procedentes de una polimerizacion

[a, B], debiéndose explicar el resto del formalismo merced a reacciones afiadidas a aquella
[6].
B. Andlisis sin difusion. Se consideraran sistemas de ecuaciones diferenciales

ordinarias en dos variables, X ¢ Y [3,8]:
X=M(X,Y)
] 2)
Y =N(X.Y)
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El estado (o estados) estacionario(s) de (1), que se denota(n) SSg), cumple(n) X =0,

Y =0, y se calcula(n), por tanto, resolviendo las ecuaciones M(X Y¢) = 0, N(Xo.Yo) = 0.

Seguidamente se forma un sistema variacional linealizado [9,10], definiendo las

perturbaciones
x(t) = X -X
() 0 3)
y) =Y -Y,
que sera
X =CX+ gy
. 4)
y =ax+by
donde los coeficientes
S e 5] (5] F)
C:_ag:_aa:_ab:_
0X J, oy 0 ox ), oy 0
son los elementos de la matriz caracteristica no difusiva
a b
cuya traza vale
To =b+c (5)
y cuyo determinante es
Dety =bc - ag (6)

En las inmediaciones del estado estacionario las soluciones de la ecuacion (3) tienen la

forma

x = Ae™
(7)

y =Be”

donde o son las raices de la ecuacion secular
o’ - Tow + Dety =0 (8)

El estado estacionario es inestable si al menos una de estas raices posee parte real
positiva. Ello puede ser debido a que Dety < 0, pero esta circunstancia hace que el estado
estacionario sea un punto de silla, que habitualmente implica explosiones y se descarta como
modelo realista quimico; o puede ser debido a Try> 0. Si Dety> 0 y el discriminante:

Ao=Ty* - 4Det 9)
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es Ap> 0, el estado estacionario es un nodo; si To=0y Ay < 0 es un centro; si To= 0y Ag<O0,
es un foco.

En todos los sistemas de ecuaciones que se examinardn, sera Dety > 0, y ademas en
todos, sera posible la transicion de To <0a To =0y a Ty > 0, es decir, de foco estable (T <0,
Ao = -4Dety < 0) a centro (To =0, Ag=-4Dety < 0), y a foco inestable (Ty > 0, Ao~ -4Dety < 0).
Hopf [11] demostrd que esta bifurcacion conlleva el surgimiento de un ciclo limite en torno
al foco inestable, con oscilaciones sostenidas del sistema. En este trabajo se comprueba la
existencia de bifurcaciones de Hopf en todos los casos estudiados, si bien para ellos ya se ha
dado otra prueba mas rigurosa de la existencia de ciclo limite (6), empleando el teorema de
Poincaré-Bendixson (12).

C. Incluyendo la difusion. Para tener en cuenta los efectos de la difusion a lo largo de

una sola dimension (r), las ecuaciones de la reaccion (2) se amplian en la forma [13, 9]:

2
%:M(X,Y)+DX%
ot or

(10)
oY o’Y
—=NX,Y)+D,—
ot or
siendo Dy, Dy los respectivos coeficientes de difusion. En este contexto, el(los) estado(s)
estacionario(s) no-difusivos(s) investigado(s) en la seccion precedente reciben el nombre de
estado(s) estacionario(s) homogéneo(s). Su estabilidad se estudia también por linealizacion,
definiendo perturbaciones que se suponen de la forma apropiada para las condiciones de
contorno que se deseen imponer (En este articulo se suponen condiciones de Neumann [10]

(de no-flujo en la frontera del sistema)), por ejemplo, de la forma siguiente:

x(t,r) = Ae®cos nr = X - X
(11)
y(t,r) = Be®cosnr=Y - Yy

donde n es el numero de ondas, que bajo las condiciones x(0,L) = +A e y(0,L) = +B debe

satisfacer la cuantificacion
11V/4 . .
n= T (L = longitud del sistema; m=0, 1, 2, 3, ....)

La matriz secular del sistema linealizado queda de la forma
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c-Dn’> g
M, = , (12)
a b-Dn
cuya traza es
Ta=To- (Dx+ Dy)n’ (13)
y cuyo determinante es
Det, = Deto - n°(bD, + c¢D,) + D,D,n* (14)

los cuales dependen ahora del nimero de ondas n. Las raices de la ecuacion secular,

o - Tyo + Det, = 0 (15)

dependeran asimismo del nimero de ondas n; como antes, si alguna de ellas tiene (para un
numero de ondas dado) parte real positiva, el estado estacionario homogéneo serd inestable.
Esto puede deberse, como antes, a la condicion Det, < 0, 6 a T, > 0. La condiciéon T, > 0 es
imposible de cumplir a menos que ya en el caso no difusivo fuese Ty> 0, o sea, que el estado
estacionario homogéneo fuese ya inestable en ausencia de difusidén: es imposible pues,
desestabilizar por difusion un estado estacionario homogéneo estable que tuviese Ty < 0, Det,
> (. Aun en el caso de Ty > 0, si o tuviese parte real positiva por ser T, > 0, dicha parte real
positiva seria Mre+ = Tn/2 si An = Tn2 - 4Det, <0, o bien wgrer = [(Ty + An" 2)/2] si An > 0; en
uno u otro caso, el mayor valor positivo de dicha parte real se alcanza cuando n = 0. Esto
significa que en caso de haber en competencia varias soluciones (para varios n), la homogénea
(n = 0), si esta permitida por las condiciones de contorno, se amplifica mas rapidamente y
prevalece sobre las demas, no homogéneas, no siendo posible observar estructuras espaciales.

Queda la condicién Det, < 0. Designando p = n’, la ecuacién (14) se puede expresar

como trinomio de segundo grado:

Det,= Deto - p(bDy + cD,) + D,Dyp”> < 0 (16)

y cabe pensar que se pueda cumplir (aunque Ty> 0 y Dety> 0, en cuyo caso si se puede decir
que la difusion desestabiliza un estado estacionario homogéneo estable en ausencia de ella) en
un cierto intervalo p; < p < p,. Como quiera que han de ser p, > p; > 0, y pip2 = Deto/DyDy,
este cumplimiento requiere primeramente que Dety > 0. Dado que ademas pip, = [(bDyx +
cDy)/DDy] > 0, se precisa bDx + c¢Dy > 0. Por fin, otro requisito para que exista ese intervalo

debera ser que sea positivo el discriminante,

A= (bDx + cD,)* - 4D,D,Dety > 0 (17)
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En caso de que se cumpliesen todas estas condiciones, al ser T, < Ty < 0, Det, < 0 < Dety,
serd /A >./A,, de modo que puede ser valida, tal vez, T, +,/A, >T, +./A, , la parte real

positiva de  sera mayor, para algin n # 0, que para n = 0, y si asi sucede, la perturbacion no
homogénea crece mas rapido que la homogénea (si ambas coexisten y compiten).

Si el estado estacionario homogéneo se inestabiliza para algin valor del numero de
ondas n, una fluctuacion inicial que posea alguna componente de Fourier con dicho n, hara
salir al sistema del estado estacionario homogéneo y se producird lo que se denomina un
orden espacial nuevo, “producido por fluctuaciones” [14]. A continuacién, se examinan
diversos modelos matematicos.

MODELOS

1. Modelo de Rossler modificado [6,15].

1.A. En ausencia de difusion, responde a las ecuaciones

X = -k, XY +k,X* -k, X? +k X + kg
) (18)
Y =k X-k,Y
y se pueden ver representadas, en los términos de X, polimerizaciones [0,1], [0,2], [1,1],
[2,1]y [2.,2], englobando los términos ~ -X y ~ -X* como parte de los términos en ks y k.

1.B. Considérese un caso concreto (6), con los valores de las constantes (en unidades

adecuadas): k;=1,k,=0,9, ks=1, ky= 0.2, ks= 0,01, k¢= 1,5¢ y k7= €. El sistema resultante:

X =-XY+0,9X*-X>+0,2X+0,01

Y =£(1,5X - Y)

(19)

posee un solo estado estacionario homogéneo, (Xo= 0,271, Y, = 0,4065) y su matriz secular

€S

(o]

B 0,061 -0,271
B 1,5¢ -

con Ty = 0,061 - g, que sera positiva si € < 0,061, y Dety= 0,3455¢ > 0. Asi, la ecuacion (19)
admite bifurcacion de Hopf, y un ciclo limite en torno al estado estacionario inestable para € <
0,061.

1.C. Introduciendo la difusion, la ecuacion [18] se escribe,
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2
& _ —k XY + Kk, X? = kX7 + kX + Kk + px 2 >2(
o - o
—=kX-kY+D
ot ° ! Yor
y concretamente con los valores postulados en la Seccion 1.B, es
2
X _ XY 4 0,9X% —X* +0,2X + 0,01 + DxI2
ot r @1)

Y %Y
2 —g(L,5X -Y) + Dy
o = )+ DY on

siendo

n

0,061-D,n*  -0,271
11,5 —&—D,n’

cuya traza es T, = 0,061 - ¢ - (Dx+ Dy)n2 y cuyo determinante es:

Det, = 0,3455¢ - n*(0,061D, - €D,) + DyD,n*
y Yy

El requisito Dety > 0 se cumple; el bDy + cDy > 0 implica que 0,061Dy > €Dy, y el
determinante (17) requiere que (0,061Dy - eD,)* > 4DD,0,3455¢. Para € = 1 (valor para el
cual Ty < 0), Dy = 1, Dy = 600 (unidades adecuadas), también se cumple esta condiciéon. Un
posible valor de p que haga Det, < 0 podria ser entonces p = 0,025; la parte real de  para ese
p vale (0,021/2), y supera a la parte real de ®, que es (T¢/2) <0 (pues Ag = -0,5 < 0, el estado

estacionario homogéneo era foco estable).
2. Modelo de Rossler [6, 16].

2.A. Las ecuaciones cinéticas en ausencia de difusion son ligeramente diferentes:

X+k (22)
Y =k X -kY

y en los diversos monomios de X se pueden representar polimerizaciones [0,1], [0,2], [1,1]
(estas tres, englobando parcialmente los términos con ~ -X en el k;X) y [2,2].
2.B. Dando a las constantes los valores concretos k; =1, ko =1, ks =1, ks = 0,1, ks =

1,5¢, k¢= €y k=0,1, se tiene el sistema

7 Rev. Iberoam. Polim., 9(1), 1-18 (2008)
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. 2
X=X-2X x40
X +0,1 (23)
Y =¢(1,5X-Y)

cuyo estado estacionario homogéneo coincide con el del modelo 1, Xy = 0,271, Y, = 0,4065,
pero la matriz secular es

_(0,1627 -0,7305
0 1,5¢ -€

la traza Ty = 0,1627 - ¢, serd positiva si € < 0,1627. El Dety = 0,93¢ > 0. Si € < 0,1627, existe
un ciclo limite alrededor del estado estacionario inestable.

2.C. Teniendo en cuenta la difusion, la ecuacion (22) se escribe

2
a—szlx—kzXY -k X*+k, +Dxa—)2(
ot X+k or
oY 0*Y -
— =k X -kY + Dy—-
ot 5 6 y 81'2
que con los mismos parametros que en el caso 2.B da
2
%:X—XXT) 1—X2+0,1+Dxir—)2(
i i (25)
oY oY
—=¢(L5X-Y)+D,—-
ot ( )+ Dy or?

Asi la matriz M;, queda de la forma

0,1627 — D, —0,7305
(1,5e —&-D,n’

n

cuya trazaes T, =0,1627 - ¢ - (Dx+ Dy)n2 y cuyo determinante es:

Det, = 0,93¢ - n*(0,1627D, - £D,) + D,Dyn*

El requisito Dety > 0 se cumple; el bDy + ¢Dy > 0 implica que 0,1627Dy > eDy; y por
ultimo, la ecuacion (17) implica (0,1627Dy, - eDy)’ > 4D,D,0,93¢. Si € = 1 (valor para el cual
To <0), Dy =1, Dy = 160, se cumplen estas desigualdades; para p = 0,09 resulta Det, <0, y la
parte real de ® es 0,0031/2, mayor que la parte real de ®,, la cual vale To/2 <0 (ya que Ag ~ -

3,031 <0, el estado estacionario homogéneo era foco estable).

3. Modelo de Gray-Aarons [6, 17].

8 Rev. Iberoam. Polim., 9(1), 1-18 (2008)
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3.A. Basandose en un mecanismo sencillo disefiado originalmente por Gray y Aarons

(17) para reacciones en llamas, sus ecuaciones sin difusion, son:
y k., X
X =k,XY -k, X* - —2——k,X +k;

Y =k, -k, XY -k, Y
donde se ha afiadido la constante ks para permitir la prueba de Poincaré-Bendixson [6]. La
forma algebraica de estas ecuaciones admite procedencia de polimerizaciones [0,1], [0,2],
[1,1], y [2,2], de forma directa en todas ellas.

3.B. Con los valores concretos de las constantes: k; = 1/, ko= 1/p, ks = 5/u, ka = 1/p,

ks=0,25/n, k¢=6,8283, k=1, k;=1y kg= 1, resulta el sistema

X =Loxy - x2—22 _x 40,25

M X +1 (27)
Y = 6,8283 — XY - Y

que presenta estado estacionario en X, = 0,5833, Y, =4,3127. La matriz secular es

0,1516  0,5833
M, = H H
-4,3127 -1,5833

su traza es To = (0,1516/p) — 1,5833, que sera positiva si pu < 0,096. El Dety = (2,2756/u) > 0.
Asi pues, si p < 0,096, existe un ciclo limite en torno del estado estacionario inestable.

3.C. Introduciendo la difusion, la ecuacion (26) se escribe

2
a—X:kIXY—kzXz _ kX ~k X +kg +Dxa—)2(
ot X+k or
(28)
oY O*Y

E:k6 —k7XY—k8Y+Dy¥

Con el mismo conjunto de pardmetros que en el caso 3.B, sera

2
%(:l(XY —XZ—XS—Xk—X +0,25)+ Dxaa—)z(
u + r 29)
oY oY

—=6,8283 - XY =Y + D, —
ot Yor
Ahora,

9 Rev. Iberoam. Polim., 9(1), 1-18 (2008)
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0,1516_Dan 0,5833
M, = Yz, Y7,
—4,3127 ~1,5833-D,n’

cuya traza es
_0,1516

1)

T

n

~1,5833—(D, +D,)n’

y cuyo determinante

Det

n

_2,2756 _n2[0,1516

D, - 1,5833ij+ D D n*
H K

0,1516
1)

Es Dety > 0, y para cumplirse D, >1,5833D,,y la ecuacion (17) debe ser:

2,2756
1)

(0,1516

2
D, —-1,5833D J >4D D
M y X y X

se puede tomar p = 1 (que haria To <0), Dy =1, Dy = 500. Un valor de p que hace Det, <0 es,
por ejemplo, p = 0,09, para el cual la parte real de ® es (0,0152/2), mayor que la parte real de
,, que seria (To/2) <0 (ya que A <0, el estado estacionario homogéneo era un foco estable).
4. Modelo de Edelstein [6,17,18].
4.A. Este modelo se basa en un mecanismo enzimdtico [18-20] cuyo sustrato es el
mondémero X, lo que lo hace particularmente plausible para aplicarlo a polimerizaciones
bioquimicas. Sus ecuaciones son

kX +k, Lk

X =k, XY -k, X* - ;
k5X +k6 (30)

cuya forma se adapta solamente a polimerizaciones [2,2].
4.B. Eligiendo para las constantes los valores (6) (en unidades adecuadas): k; = 1/p, ks

= 1/u, k3= 60/, ks= 60/p, ks= 1, ke= 2,2, k7= 30/, ks = 16,858 y ko= 1, se tiene

).( :l(xy —X? _M+30)
Y7, X+2,2 (31)

Y =16,858 — XY
que posee estado estacionario en Xo= 2, Yo = 8,429. La matriz secular vale

10 Rev. Iberoam. Polim., 9(1), 1-18 (2008)
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0,3474 2
M 0= H H
-8,429 -2
~0,3474

su traza es T, = —2, que sera Top> 0 si u < 0,1737. Su Dety = (16,1633/n) > 0. Asi
u

pues, si u < 0,1737, existe un ciclo limite en torno del estado estacionario inestable.

4.C. Teniendo en cuenta la difusion, la ecuacion (30) se escribe

2
%X =k, XY -k, X —%+k7 +Dxaa—)2(
5 2+ 6 r (32)
oY oY
— =k —koXY +D,—
ot R Y oor?
o bien, con los valores concretos mencionados en el caso 4.B,
2
a_le(xy —X? _m+30)+ D, 0 >2(
ot wu X+2,2 or
oY oY )
—=16,858 - XY + D,—
ot or
siendo
0,3474 “D.n’ 2
M, = n n
—-8,429 —2—Dyn2
cuya traza es

03474
0

T

n

-2-(D,+D,)n’

y cuyo determinante

Det, = 16:1633 _n2(0,3474

D, - 2DXJ +D,D,n*
K H

Es Dety > 0; para obtener
0,3474

u

D >2D

y X

16,1633
u

(0,3474

2
D, - 2Dx] >4D D,
0

se puede tomar p = 1 (que conduce a Ty < 0), Dy = 1, Dy = 600, con ello se satisfacen las

condiciones para Det, <0, si p = 0,2, valor para el que la parte real de o es (0,2644/2), mayor
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que la parte real de ®, (sin difusion), que seria (To/2) < 0. Ya que Ay < 0, el estado
estacionario homogéneo era un foco estable y la difusion podra desestabilizarlo.

5. Oscilador de Oregon (6,21), acoplado rigidamente [22].

5.A. Fue ideado en principio por Field y Noyes (21) como modelo para la conocida
reaccion oscilante de Belousov-Zhabotinskiy (1). Estos autores lo plantean en tres variables,
pero es posible reducirlo a dos suponiendo que la tercera se mantiene siempre en estado
estacionario (eliminacion adiabatica) [23], sin perder sus principales caracteristicas

interesantes. Las ecuaciones diferenciales que resultan son isomorfas a las siguientes:

X:M—stx—l%xz
k3 +k4X (34)
Y =k, X - kyY

susceptibles de modelar polimerizaciones de las clases [0,1], [0,2], [1,1] (englobando el
término ~ -X como parte del término en ks), y [2,2].

Notese que si en las ecuaciones (22) se hace ks = 0 (modelo de Rossler “degenerado”),
y en la ecuaciones (34) se hace k; = 0, los dos sistemas de ecuaciones diferenciales resultarian
isomorfos.

Esta unificacion de los modelos no conlleva pérdida de representatividad de

polimerizaciones mediante los correspondientes monomios, y evita la asintota vertical (X =

ki/k;) de la nuliclina X = 0 del sistema de ecuaciones (34).

5.B. Concretando los parametros de la siguiente manera (en unidades propias) (6): k; =

I,k,=1,ks=1,ks=1, ks= 1, el sistema (34) pasa a ser

x = YA=X)  y kx>
1+ X (35)
Y = &(X —Y)

Hay un estado estacionario en Xy = Y, para el cual k6 = 2/[X((1+X()]. La matriz

secular es
—_— — 2_ —_—
c=2—Y"2+1—2k6Xo g:1 al C:X04—X02+3 g:l Xy
M, = 1+X0) I+ X, | = (1+X0) 1+ X,
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Solo hay posibilidad de estado estacionario homogéneo inestable (T, > 0) si ¢ > 0, por

tanto, X, > 4,646. Tomando, pués Xo =15, Yo =35, k¢ = 1/15, la matriz secular es:

12
M, =|18 3
£ -
y su T, = (1/18) - €. Mientras que su D¢, = (11/18) € > 0. Si ¢ < (1/13), el estado estacionario
sera inestable y surge un ciclo limite a su alrededor.

5.C. Introduciendo la difusion, las ecuaciones (34) se escriben

2
%X _ —Yl((kl kkig FkX—kX?+D, 2%
3 + 4 , (36)
oY oY
E=k7X - ng + Dy?
Usando las mismas constantes que en 5.B, se concreta como
2
X_YU=X)  x Lx2yp 2%
th 1+ X lng or 37)
—=¢&(X-Y)+D,—
at ( ) y arZ
con
1 2
M, =| I8 3
€ —£— Dyn2

cuya traza es
Ta=(1/18) — (Dx+ Dy)n’
y cuyo determinante

Det, = (11/18)¢ — n*[(11/18)D, —¢D,] + D,D,n’

Dado que Dety = (11/18) € > 0, se puede cumplir (D,/18) > €Dy, y la ecuacion (17) si €
=1 (lo cual, por cierto, significa Ty <0), Dy = 1, Dy, = 900; obteniéndose que por ejemplo p =
0,0225 satisface las condiciones para Det, = - 0,03576 < 0. Para dicho valor p = 0,0225, la
parte real de ® es 0,00354/2, mayor que la correspondiente a n = 0, que seria To/2 <0 (ya que

es también Ay < 0, el estado estacionario homogéneo era un foco estable).
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En la version original de Field y Koros para explicar la reaccion de Belousov-
Zhabotinskiy, el valor de ke, basado en la quimica del bromo [24], era k¢ = 8,375.10° (en
unidades apropiadas).

6. Oscilador de Bruselas.

6.A. Este “Bruselator” es un famoso modelo, debido a los trabajos pioneros de
Prigogine y colaboradores [25]. Aunque ha sido muy criticado por incluir una etapa
trimolecular [26] (responsable del monomio ~ X°Y), puede soslayarse tal dificultad
introduciendo una tercera variable que se elimina adiabaticamente [27]. En todo caso sus

ecuaciones diferenciales son:

X =k, —k,X - kX +k,X2Y
. (38)
Y =k, X -k XY

Tiene estado estacionario en

Xy = . k,k Y, = ks (k2+k3_k4k5)
k2+k3—ﬁ k6k1 ke

6

Se pueden amoldar a estas ecuaciones polimerizaciones [0,1] y [0,2].
6.B. En los estudios realizados del Brusselator [6] se suele suponer, por sencillez los
valores, k; = A, ko = ks =B y ks = ks = k¢ =1 (en unidades adecuadas), con lo cual la ecuacion

(38) toma la forma:

T _ A _ 2
X=A-BX-X+XY (39)

Y =BX - X*Y

y asi Xo = A, Yo = B/A; la matriz secular es
M = c=B-1 g=A° B B-1 A’
* la=-B b=-A>) |-B -A

conTo=B-1- AZ, y Dety = A?>0.ParaB>1+ A’ , se tiene Ty > 0, y hay un ciclo limite

rodeando al estado estacionario inestable.

6.C. Teniendo en cuenta la difusion, el sistema (39) se escribe

2
%:A—BX—X+X2Y+DX6>§

oY ’Y 0
EzBX—X2Y+Dy?
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y la matriz es ahora
B-1-Dn*> A’
-B —-A’-D,n’

cuyaT,=B-1- A?- (Dy+ Dy)nz, y cuyo determinante es:
Det,= A*- n’[(B - 1)D, - A’D,] + D;Dyn*

Se puede tener inestabilidad del estado estacionario homogéneo, desde luego, si T, >
0,0seasi B>Bjn)=1+A% + (Dy+ Dy)nz. El valor critico B; depende de n; su valor
minimo (14) se alcanza (dB;/dn = 0) cuando n = 0 (fluctuacion homogénea), y vale Bimin =1
+ Az, como en el caso no difusivo, confirmando en efecto que la difusién no desestabiliza un
estado estacionario homogéneo que sea estable por causa de Ty < 0. También puede haber

estado estacionario homogéneo inestable si Det, < 0, lo que implica que

2

B>B2(n)=1+A2&+DXn2+
D Dn

y y

2

el minimo valor del limite critico B, se obtiene (dB,/dn = 0) para

2

2
n’ = A yvaleBZmin=[1+A BXJ

D.D

Xy y

Es obvio que si Dy = Dy, serd Bimin =1 + A%< Bomin=(1 + A)z, lo que significa que al
ir aumentando B se alcanza antes la bifurcacion para Bimin, en la cual la perturbacion
homogénea es la mas rapida, y no se veran estructuras espaciales inhomogéneas ( si se vera el
ciclo limite, porque B, > B > B; implica Ty > 0). Pero si Dy >> D, , entonces puede ocurrir
que Bomin < Bimin (en el caso extremo (Dy/Dy) — 0, Bomin=1 <Bimin= 1+ Az), y al aumentar B
acaece antes la bifurcacion en Bonin, y aparece (orden a través de fluctuaciones) una estructura
disipativa correspondiente a n” = (Az/Dny)l/ 2

Por ejemplo, si A =2, B=2 (Tp=-3, Dety=4 >0, Ag=-7 <0, el estado estacionario
homogéneo era un foco estable), para Dy = 1, Dy, = 25, el valor de p = 0,4 satisface todas las
condiciones, haciendo Det, = -0,4; la parte real de w, serd 0,0596/2, mayor que la de w,, que

seria To/2 <O0.
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7. Oscilador de van Der Pol (ampliado) [6,28].

7.A. Para adaptar las variables de este sistema (en principio, concebido como oscilador
electronico) para representar concentraciones, se precisa limitar en el plano de fases la cuenca
de atraccion del ciclo limite que aparecera en caso de ser inestable el estado estacionario no
difusivo [6]. La frontera delimitadora de dicha cuenca se construye empleando técnicas
similares a las usadas para el recinto de Poincaré-Bendixson [29]. Las ecuaciones

diferenciales son:

).(=k1X+k2X2—k3X3+k4—k5Y 1)
Y =kX -k,

Ellas pueden servir de soporte a polimerizaciones [0,1], [0,2], [1,1] y [2,1],
englobando los términos ~ -X en el de ky, y a las [2,2], englobando el término ~ -X* como
parte del monomio en k.

7.B. Introduciendo el cambio definido por las ecuaciones (41), y con las relaciones (6):

k, = o —3AX5 —2pX,, k, =p+30X,, ky =\
k, =pXg +AX; —aX, +3Y,, ks =B, ks =7, k, =vX,

la ecuacion (41) se convierte en la ecuacion (42):

X = aX + pX° — AX® —
ax+ p By “2)

Y =7

cuyo estado estacionario es x = 0, y = 0. Se tiene (despreciando los términos infinitésimos de

orden superior al primero):

cuya To= a > 0 y cuyo Dety = By > 0. El estado estacionario no difusivo es inestable siempre
si a > 0, y existe en torno de ¢l un ciclo limite.

7.C. Teniendo en cuenta la difusion, la ecuacion (42) se modifica segin:

y s ; o’ X
X=aX+ pX” —AX - By + D,—
or
(43)
. azy
y=r+b7
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a-Dn* -
M. - X B 2
Y -D,n

cuya T, = o - (Dx + Dy)nz, y cuyo determinante es Det, = By - n’aDy + DXDyn4. Puede

siendo

cumplirse que Det, < 0, pero para que la suma p; + p, sea positiva se requiere que a > 0; es
evidente que se puede tener un estado estacionario homogéneo inestable, pero no proviniente
de la inestabilizacion por difusion del sistema estacionario homogéneo por difusion, puesto

que ya era inestable (a0 > 0, Ty > 0) en el caso no difusivo.

RESUMEN Y CONCLUSIONES

Excepto la polimerizacion [1, 2], las restantes del esquema clasificatorio dado pueden
acoplarse al menos a uno, frecuentemente a varios, de los siete osciladores citados. En todos
los modelos es posible bifurcacion supercritica de Hopf, con aparicion de ciclo limite, en
ausencia de difusién. En todos los casos, se puede tener estado estacionario homogéneo
inestable en presencia de difusion, y excepto en el modelo de van der Pol, la difusion puede
desestabilizar un estado estacionario homogéneo que era estable en ausencia de ella. Por el
momento es dificil decir qué aplicaciones cientificas o tecnoldgicas podria tener el marco

teorico aqui desarrollado [30].
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