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INTRODUCCIÓN 

 

Al encontrarse los primeros ejemplos de reacciones químicas oscilantes [1] y de 

estructuras espaciales en sistemas químicos [2] (por ejemplo ondas de concentración), los 

investigadores buscaron marcos matemáticos que les permitieran encuadrar los datos 

obtenidos en sus laboratorios. Las ecuaciones diferenciales ordinarias, no lineales, 

suministran generalmente modelos apropiados para las oscilaciones químicas [3], cuando se 

considera a aquellas como procedentes de desarrollo de la cinética formal; las ecuaciones 

diferenciales en derivadas parciales [4], cuando se las interpreta en términos de cinética de 

reacción combinada con difusión en el espacio, podrán dar cuenta del surgimiento de 

ordenaciones espaciales. 

Existen desde hace algún tiempo diversos mecanismos de reacción [5], en general 

complicados, que se adaptan a modelos matemáticos que predicen aparición  de oscilaciones 

o/y estructuración espacial. 

Recientemente se ha sugerido [6] que el formalismo de las ecuaciones matemáticas de 

estos modelos podrá ser dividido en diversas partes, sólo algunas de las cuales procederán del 

quimismo de la reacción principal objeto de estudio, mientras que las restantes se 

consideraran provenientes de procesos colaterales, accesorios añadidos a aquella. En esta 

concepción, prácticamente cualquier reacción podrá ser convertida en oscilante y/o en 

“estructura disipativa”, sin más que buscar la forma de agregarle los procesos colaterales 

pertinentes. En este trabajo se muestra un ejemplo de aplicación de esta idea a las reacciones 

de polimerización. 
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TEORÍA GENERAL 
 

A. Procesos de polimerización considerados y sus ecuaciones de velocidad [7]. En 

las polimerizaciones estudiadas se consideran tres clases de etapas: 

 

Iniciación:     
kiX Rα ⎯⎯→  

 

donde X representa al monómero y R a los radicales propagadores y cuya velocidad es de la 

forma Vi ∼ Xα; en donde el exponente α puede adoptar los valores 0, 1 ó 2. 

 

Propagación:     pkR X R+ ⎯⎯→  

cuya velocidad es de la forma Vp ∼ RX 

Terminación:    tkR productosβ ⎯⎯→  

cuya velocidad es de la forma Vt ∼ Rβ; en este caso el parámetro β puede valer 1 

(transferencia a un tercer cuerpo) ó 2 (reacción entre propagadores [recombinación]). 

Se acostumbra a admitir la hipótesis del estado estacionario para los propagadores R, 

es decir, igualar Vi = βVt, de donde se despeja que R ∼ Xα/β, lo cual da, para la contribución 

de la polimerización a 
•

X , un término (o términos si α ≠ 0) de la forma 

1

gipol XkXkX
+

β
α

α
•

−α−=  (1) 

donde kg engloba las constantes de velocidad kp y kt ( ( )1/β
g p i tk = k k /k . 

En lo que sigue y dado que la forma de las etapas de propagación se considera 

invariante, se denotarán los diversos tipos de polimerizaciones que se citen mediante la 

simbología [α, β] [6]. 

En los varios sistemas de ecuaciones de osciladores que se citen podrán suponerse los 

correspondientes monomios en αXα o/y X[(α/β)+1] como procedentes de una polimerización  

[α, β], debiéndose explicar el resto del formalismo merced a reacciones añadidas a aquella 

[6]. 

B. Análisis sin difusión. Se considerarán sistemas de ecuaciones diferenciales 

ordinarias en dos variables, X e Y [3,8]: 

     
X =M(X,Y)

Y =N(X,Y)

•

•
      (2) 
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El estado (o estados) estacionario(s) de (1), que se denota(n) SS(i), cumple(n) 0X
•

= , 

0Y
•

= , y se calcula(n), por tanto, resolviendo las ecuaciones M(X0,Y0) = 0, N(X0,Y0) = 0. 

Seguidamente se forma un sistema variacional linealizado [9,10], definiendo las 

perturbaciones 

    0

0

x(t)  X - X
y(t)  Y - Y

=
=

      (3) 

que será 

    
x cx gy

y ax by

•

•

= +

= +
       (4) 

donde los coeficientes 

,
x
Mc

0
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

=  
0y

Mg ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

= , 
0x

Na ⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

= , 
0y

Nb ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=  

 
son los elementos de la matriz característica no difusiva 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

ba
gc

M0  

cuya traza vale  

T0 = b + c            (5) 
y cuyo determinante es 
     Det0 = bc - ag      (6) 

 
En las inmediaciones del estado estacionario las soluciones de la ecuación (3) tienen la 

forma 

 
    x = Aeωt 

           (7) 
    y = Beωt  

 
donde ω son las raíces de la ecuación secular 

     ω2 - T0ω + Det0 = 0     (8) 

 

El estado estacionario es inestable si al menos una de estas raíces posee parte real 

positiva. Ello puede ser debido a que Det0 < 0, pero esta circunstancia hace que el estado 

estacionario sea un punto de silla, que habitualmente implica explosiones y se descarta como 

modelo realista químico; o puede ser debido a Tr0 > 0. Si Det0 > 0 y el discriminante: 

     Δ0 = T0
2 - 4Det0      (9) 
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es Δ0 > 0, el estado estacionario es un nodo; si T0 = 0 y Δ0 < 0 es un centro; si T0 ≠ 0 y Δ0 < 0, 

es un foco. 

 En todos los sistemas de ecuaciones que se examinarán, será Det0 > 0, y además en 

todos, será posible la transición de T0 < 0 a T0 = 0 y a T0 > 0, es decir, de foco estable (T0 ≤ 0, 

Δ0 ≈ -4Det0 < 0) a centro (T0 = 0, Δ0 = -4Det0 < 0), y a foco inestable (T0 ≥ 0, Δ0 ≈ -4Det0 < 0). 

Hopf  [11] demostró que esta bifurcación conlleva el surgimiento de un ciclo límite en torno 

al foco inestable, con oscilaciones sostenidas del sistema. En este trabajo se comprueba la 

existencia de bifurcaciones de Hopf en todos los casos estudiados, si bien para ellos ya se ha 

dado otra prueba más rigurosa de la existencia de ciclo límite (6), empleando el teorema de 

Poincaré-Bendixson (12). 

C. Incluyendo la difusión. Para tener en cuenta los efectos de la difusión a lo largo de 

una sola dimensión (r), las ecuaciones de la reacción (2) se amplían en la forma [13, 9]: 

 

2

2

2

2

( , )

(10)

( , )

x

y

X XM X Y D
t r

Y YN X Y D
t r

∂ ∂
= +

∂ ∂

∂ ∂
= +

∂ ∂

 

 
siendo Dx, Dy los respectivos coeficientes de difusión. En este contexto, el(los) estado(s) 

estacionario(s) no-difusivos(s) investigado(s) en la sección precedente reciben el nombre de 

estado(s) estacionario(s) homogéneo(s). Su estabilidad se estudia también por linealización, 

definiendo perturbaciones que se suponen de la forma apropiada para las condiciones de 

contorno que se deseen imponer (En este artículo se suponen condiciones de Neumann [10] 

(de no-flujo en la frontera del sistema)), por ejemplo, de la forma siguiente: 

 
 x(t,r) = Aeωtcos nr = X - X0 

          (11)  
 y(t,r) = Beωtcos nr = Y - Y0 

 

donde n es el número de ondas, que bajo las condiciones x(0,L) = ±A e y(0,L) = ±B debe 

satisfacer la cuantificación 

mn
L
π

=  (L = longitud del sistema; m = 0, 1, 2, 3, ....) 

 La matriz secular del sistema linealizado queda de la forma 
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⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
=

2
y

2
x

n nDba
gnDc

M  (12) 

cuya traza es 
Tn = T0 - (Dx + Dy)n2 (13) 

 
y cuyo determinante es 

Detn = Det0 - n2(bDx  + cDy) + DxDyn4 (14) 

 
los cuales dependen ahora del número de ondas n. Las raíces de la ecuación secular, 

 
ω2 - Tnω + Detn = 0 (15) 

 
dependerán asimismo del número de ondas n; como antes, si alguna de ellas tiene (para un 

número de ondas dado) parte real positiva, el estado estacionario homogéneo será inestable. 

Esto puede deberse, como antes, a la condición Detn < 0, ó a Tn > 0. La condición Tn > 0 es 

imposible de cumplir a menos que ya en el caso no difusivo fuese T0 > 0, o sea, que el estado 

estacionario homogéneo fuese ya inestable en ausencia de difusión: es imposible pues, 

desestabilizar por difusión un estado estacionario homogéneo estable que tuviese T0 < 0, Det0 

> 0. Aún en el caso de T0 > 0, si ω tuviese parte real positiva por ser Tn > 0, dicha parte real 

positiva sería ωRe+ = Tn/2 si Δn = Tn
2  -  4Detn < 0, o bien ωRe+ = [(Tn + Δn1/2)/2] si Δn ≥ 0; en 

uno u otro caso, el mayor valor positivo de dicha parte real se alcanza cuando n = 0. Esto 

significa que en caso de haber en competencia varias soluciones (para varios n), la homogénea 

(n = 0), si está permitida por las condiciones de contorno, se amplifica más rápidamente y 

prevalece sobre las demás, no homogéneas, no siendo posible observar estructuras espaciales. 

Queda la condición Detn < 0. Designando p = n2, la ecuación (14) se puede expresar 

como trinomio de segundo grado: 

 
Detn= Det0 - p(bDx + cDy) + DxDyp2 < 0 (16) 

 
y cabe pensar que se pueda cumplir (aunque T0 > 0 y Det0 > 0, en cuyo caso sí se puede decir 

que la difusión desestabiliza un estado estacionario homogéneo estable en ausencia de ella) en 

un cierto intervalo p1 < p < p2. Como quiera que han de ser p2 > p1 > 0, y p1p2 = Det0/DxDy, 

este cumplimiento requiere primeramente que Det0 > 0. Dado que además p1p2 = [(bDx + 

cDy)/DxDy] > 0, se precisa bDx + cDy > 0. Por fin, otro requisito para que exista ese intervalo 

deberá ser que sea positivo el discriminante, 

 
Δ(16) = (bDx + cDy)2 - 4DxDyDet0 > 0 (17) 
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        En caso de que se cumpliesen todas estas condiciones, al ser Tn < T0 < 0, Detn < 0 < Det0, 

será 0n Δ>Δ , de modo que puede ser válida, tal vez, 00nn TT Δ+>Δ+ , la parte real 

positiva de ω será mayor, para algún n ≠ 0, que para n = 0, y si así sucede, la perturbación no 

homogénea crece más rápido que la homogénea (si ambas coexisten y compiten). 

Si el estado estacionario homogéneo se inestabiliza para algún valor del número de 

ondas n, una fluctuación inicial que posea alguna componente de Fourier con dicho n, hará 

salir al sistema del estado estacionario homogéneo y se producirá lo que se denomina un 

orden espacial nuevo, “producido por fluctuaciones” [14]. A continuación, se examinan 

diversos modelos matemáticos. 

MODELOS 

1. Modelo de Rossler modificado [6,15]. 

1.A. En ausencia de difusión, responde a las ecuaciones 

 

 
2 3

1 2 3 4 5

6 7

X k XY k X k X k X k

Y k X k Y

•

•

⎫= − + − + + ⎪
⎬
⎪= − ⎭

 (18) 

y se pueden ver representadas, en los términos de 
•

X , polimerizaciones [0,1], [0,2], [1,1], 

[2,1] y [2,2], englobando los términos ∼ -X y ∼ -X2 como parte de los términos en k4 y k2. 

1.B. Considérese un caso concreto (6), con los valores de las constantes (en unidades 

adecuadas): k1=1, k2 = 0,9, k3 = 1, k4 = 0.2, k5 = 0,01, k6 = 1,5ε y k7 = ε. El sistema resultante: 

 
2 3X XY 0,9X X 0,2X 0,01

Y (1,5X Y)

•

•

⎫= − + − + + ⎪
⎬
⎪= ε − ⎭

 (19) 

 
posee un solo estado estacionario homogéneo, (X0 = 0,271, Y0 = 0,4065) y su matriz secular 

es  

o

0,061 0,271
M

1,5
−⎛ ⎞

= ⎜ ⎟−⎝ ⎠ε ε
 

 
con T0 = 0,061 - ε, que será positiva si ε < 0,061, y Det0 = 0,3455ε > 0. Así, la ecuación (19) 

admite bifurcación de Hopf, y un ciclo límite en torno al estado estacionario inestable para ε < 

0,061. 

1.C. Introduciendo la difusión, la ecuación [18] se escribe, 
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2
2 3

1 2 3 4 5 2

2

6 7 2

⎫∂ ∂
= − + − + + + ⎪⎪∂ ∂

⎬
∂ ∂ ⎪= − + ⎪∂ ∂ ⎭

X Xk XY k X k X k X k Dx
t r
Y Yk X k Y Dy
t r

 (20) 

 
y concretamente con los valores postulados en la Sección 1.B, es 

 

 

2
2 3

2

2

2

0,9 0,2 0,01

(1,5 )

⎫∂ ∂
= − + − + + + ⎪⎪∂ ∂

⎬
∂ ∂ ⎪= − + ⎪∂ ∂ ⎭

X XXY X X X Dx
t r
Y YX Y Dy
t r

ε
 (21) 

siendo 
2

n 2

0,061 0,271
M

1,5
x

y

D n

D nε ε

⎛ ⎞− −
= ⎜ ⎟⎜ ⎟− −⎝ ⎠

 

 
cuya traza es Tn = 0,061 - ε - (Dx + Dy)n2 y cuyo determinante es: 

 
Detn = 0,3455ε - n2(0,061Dy - εDx) + DxDyn4 

 
 El requisito Det0 > 0 se cumple; el bDx + cDy > 0 implica que 0,061Dy > εDx, y el 

determinante (17) requiere que (0,061Dy - εDx)2 > 4DxDy0,3455ε. Para ε = 1 (valor para el 

cual T0 < 0), Dx = 1, Dy = 600 (unidades adecuadas), también se cumple esta condición. Un 

posible valor de p que haga Detn < 0 podría ser entonces p = 0,025; la parte real de ω para ese 

p vale (0,021/2), y supera a la parte real de ωo que es (T0/2) < 0 (pues Δ0 ≈ -0,5 < 0, el estado 

estacionario homogéneo era foco estable). 

 2. Modelo de Rossler [6, 16]. 

 2.A. Las ecuaciones cinéticas en ausencia de difusión son ligeramente diferentes: 

 

 
22

1 3 4

5 6

k XYX k X k X k
X k

Y k X k Y

•

•

⎫= − − + ⎪+ ⎬
⎪= − ⎭

 (22) 

y en los diversos monomios de 
•

X  se pueden representar polimerizaciones [0,1], [0,2], [1,1] 

(estas tres, englobando parcialmente los términos con ∼ -X en el k1X) y [2,2]. 

 2.B. Dando a las constantes los valores concretos k1 = 1, k2 = 1, k3 = 1, k4 = 0,1, k5 = 

1,5ε, k6 = ε y k = 0,1, se tiene el sistema 
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2•
2

•

XYX = X - - X + 0,1
X + 0,1

Y = ε (1,5X - Y)

⎫
⎪
⎬
⎪
⎭

 (23) 

 
cuyo estado estacionario homogéneo coincide con el del modelo 1, X0 = 0,271, Y0 = 0,4065, 

pero la matriz secular es 

0

0,1627 -0,7305
M =

1,5ε -ε
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
la traza T0 = 0,1627 - ε, será positiva si ε < 0,1627. El Det0 = 0,93ε > 0. Si ε < 0,1627, existe 

un ciclo límite alrededor del estado estacionario inestable. 

 2.C. Teniendo en cuenta la difusión, la ecuación (22) se escribe 

 

2
22

1 3 4 2

2

5 6 2

X k XY Xk X k X k Dx
t X k r
Y Yk X k Y Dy
t r

⎫∂ ∂
= − − + + ⎪⎪∂ + ∂

⎬
∂ ∂ ⎪= − + ⎪∂ ∂ ⎭

 (24) 

 
que con los mismos parámetros que en el caso 2.B da 

 

2
2

x 2

2

y 2

X XY XX X 0,1 D
t X 0,1 r
Y Y(1,5X Y) D
t r

⎫∂ ∂
= − − + + ⎪∂ + ⎪∂

⎬
∂ ∂ ⎪= ε − + ⎪∂ ∂ ⎭

 (25) 

 
 Así la matriz Mn queda de la forma 

2

2

0,1627 0,7305

1,5
x

n
y

D n
M

D nε ε

⎛ ⎞− −
= ⎜ ⎟⎜ ⎟− −⎝ ⎠

 

cuya traza es Tn = 0,1627 - ε - (Dx + Dy)n2 y cuyo determinante es: 

 
Detn = 0,93ε - n2(0,1627Dy - εDx) + DxDyn4 

 
 El requisito Det0 > 0 se cumple; el bDx + cDy > 0 implica que 0,1627Dy > εDx; y por 

último, la ecuación (17) implica (0,1627Dy - εDx)2 > 4DxDy0,93ε. Si ε = 1 (valor para el cual 

T0 < 0), Dx = 1, Dy = 160, se cumplen estas desigualdades; para p = 0,09 resulta Detn < 0, y la 

parte real de ω es 0,0031/2, mayor que la parte real de ωo, la cual vale To/2 < 0 (ya que Δ0 ≈ -

3,031 < 0, el estado estacionario homogéneo era foco estable). 

 3. Modelo de Gray-Aarons [6, 17]. 
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 3.A. Basándose en un mecanismo sencillo diseñado originalmente por Gray y Aarons 

(17) para reacciones en llamas, sus ecuaciones sin difusión, son: 

 
YkXYkkY

kXk
kX

XkXkXYkX

876

54
32

21

−−=

+−
+

−−=

•

•

 (26) 

 
donde se ha añadido la constante k5 para permitir la prueba de Poincaré-Bendixson [6]. La 

forma algebraica de estas ecuaciones admite procedencia de polimerizaciones [0,1], [0,2], 

[1,1], y [2,2], de forma directa en todas ellas. 

 3.B. Con los valores concretos de las constantes: k1 = 1/μ, k2 = 1/μ, k3 = 5/μ, k4 = 1/μ, 

k5 = 0,25/μ, k6 = 6,8283, k = 1, k7 = 1 y k8 = 1, resulta el sistema 

 
21 5( 0,25)

1

6,8283

•

•

⎫= − − − + ⎪+ ⎬
⎪

= − − ⎭

XX XY X X
X

Y XY Y

μ  (27) 

 
que presenta estado estacionario en X0 = 0,5833, Y0 = 4,3127. La matriz secular es 

 

0

0,1516 0,5833

4,3127 1,5833
M μ μ

⎛ ⎞
⎜ ⎟= ⎜ ⎟⎜ ⎟− −⎝ ⎠

 

 
su traza es T0 = (0,1516/μ) – 1,5833, que será positiva si μ < 0,096. El Det0 = (2,2756/μ) > 0. 

Así pues, si μ < 0,096, existe un ciclo límite en torno del estado estacionario inestable. 

 3.C. Introduciendo la difusión, la ecuación (26) se escribe 

 

 

2
2 3

1 2 4 5 x 2

2

6 7 8 y 2

X k X Xk XY k X k X k D
t X k r
Y Yk k XY k Y D
t r

⎫∂ ∂
= − − − + + ⎪⎪∂ + ∂

⎬
∂ ∂ ⎪= − − + ⎪∂ ∂ ⎭

 (28) 

 
 Con el mismo conjunto de parámetros que en el caso 3.B, será 

 

2
2

2

2

2

1 5( 0,25)

6,8283

⎫∂ ∂
= − − − + + ⎪∂ + ∂ ⎪

⎬
∂ ∂ ⎪= − − + ⎪∂ ∂ ⎭

x

y

X X XXY X X D
t X k r
Y YXY Y D
t r

μ  (29) 

 
 Ahora, 
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2

2

0,1516 0,5833

4,3127 1,5833

⎛ ⎞−⎜ ⎟= ⎜ ⎟
⎜ ⎟− − −⎝ ⎠

x
n

y

D n
M

D n
μ μ  

 
cuya traza es 

2
yxn n)DD(5833,11516,0T +−−

μ
=  

 
y cuyo determinante 

4
yxxy

2
n nDDD5833,1D1516,0n2756,2Det +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

μ
−

μ
=  

 

 Es Det0 > 0, y para cumplirse xy D5833,1D1516,0
>

μ
, y la ecuación (17) debe ser: 

   
μ

>⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

μ
2756,2DD4D5833,1D1516,0

xy

2

xy  

 
se puede tomar μ = 1 (que haría T0 < 0), Dx = 1, Dy = 500. Un valor de p que hace Detn < 0 es, 

por ejemplo, p = 0,09, para el cual la parte real de ω es (0,0152/2), mayor que la parte real de 

ωo, que sería (T0/2) < 0 (ya que Δ0 < 0, el estado estacionario homogéneo era un foco estable). 

 4. Modelo de Edelstein [6,17,18]. 

 4.A. Este modelo se basa en un mecanismo enzimático [18-20] cuyo sustrato es el 

monómero X, lo que lo hace particularmente plausible para aplicarlo a polimerizaciones 

bioquímicas. Sus ecuaciones son 

2 3 4
1 2 7

5 6

8 9

k X kX k XY k X k
k X k

Y k k XY

•

•

+ ⎫= − − + ⎪⎪+ ⎬
⎪

= − ⎪⎭

 (30) 

 
cuya forma se adapta solamente a polimerizaciones [2,2]. 

 4.B. Eligiendo para las constantes los valores (6) (en unidades adecuadas): k1 = 1/μ, k2 

= 1/μ, k3 = 60/μ, k4 = 60/μ, k5 = 1, k6 = 2,2, k7 = 30/μ, k8 = 16,858 y k9 = 1, se tiene 

 

    
21 60( 1)( 30)

2,2

16,858

•

•

+ ⎫= − − + ⎪+ ⎬
⎪

= − ⎭

XX XY X
X

Y XY

μ    (31) 

que posee estado estacionario en X0 = 2, Y0 = 8,429. La matriz secular vale 
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0

0,3474 2

8,429 2

⎛ ⎞
⎜ ⎟= ⎜ ⎟⎜ ⎟− −⎝ ⎠

M μ μ  

 

su traza es 23474,0T0 −
μ

= , que será T0 > 0 si μ < 0,1737. Su Det0 = (16,1633/μ) > 0. Así 

pues, si μ < 0,1737, existe un ciclo límite en torno del estado estacionario inestable. 

 4.C. Teniendo en cuenta la difusión, la ecuación (30) se escribe 

 

2
2 3 4

1 2 7 x 2
5 6

2

8 9 y 2

X k X k Xk XY k X k D
t k X k r

Y Yk k XY D
t r

⎫∂ + ∂
= − − + + ⎪∂ + ∂ ⎪

⎬
∂ ∂ ⎪= − + ⎪∂ ∂ ⎭

 (32) 

o bien, con los valores concretos mencionados en el caso 4.B, 

 

2
2

2

2

2

1 60( 1)( 30)
2,2

16,858

⎫∂ + ∂
= − − + + ⎪∂ + ∂ ⎪

⎬
∂ ∂ ⎪= − + ⎪∂ ∂ ⎭

x

y

X X XXY X D
t X r
Y YXY D
t r

μ  (33) 

siendo 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−−

μ
−

μ=
2

y

2
x

n

nD2429,8

2nD3474,0
M  

cuya traza es 

2
yxn n)DD(23474,0T +−−

μ
=  

y cuyo determinante 
4

yxxy
2

n nDDD2D3474,0n1633,16Det +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

μ
−

μ
=  

 
 Es Det0 > 0; para obtener  

xy D2D3474,0
>

μ
 

y 

μ
>⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

μ
1633,16DD4D2D3474,0

xy

2

xy  

 
se puede tomar μ = 1 (que conduce a T0 < 0), Dx = 1, Dy = 600, con ello se satisfacen las 

condiciones para Detn < 0, si p = 0,2, valor para el que la parte real de ω es (0,2644/2), mayor 
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que la parte real de ωo (sin difusión), que sería (T0/2) < 0. Ya que Δ0 < 0, el estado 

estacionario homogéneo era un foco estable y la difusión podrá desestabilizarlo. 

 5. Oscilador de Oregón (6,21), acoplado rígidamente [22]. 

 5.A. Fue ideado en principio por Field y Noyes (21) como modelo para la conocida 

reacción oscilante de Belousov-Zhabotinskiy (1). Estos autores lo plantean en tres variables, 

pero es posible reducirlo a dos suponiendo que la tercera se mantiene siempre en estado 

estacionario (eliminación adiabática) [23], sin perder sus principales características 

interesantes. Las ecuaciones diferenciales que resultan son isomorfas a las siguientes: 

 
21 2

5 6
3 4

7 8

Y(k k X)X k X k X
k k X

Y k X k Y

•

•

− ⎫= + − ⎪⎪+ ⎬
⎪

= − ⎪⎭

 (34) 

 
susceptibles de modelar polimerizaciones de las clases [0,1], [0,2], [1,1] (englobando el 

término ∼ -X como parte del término en k5), y [2,2]. 

 Nótese que si en las ecuaciones (22) se hace k4 = 0 (modelo de Rossler “degenerado”), 

y en la ecuaciones (34) se hace k1 = 0, los dos sistemas de ecuaciones diferenciales resultarían 

isomorfos. 

 Esta unificación de los modelos no conlleva pérdida de representatividad de 

polimerizaciones mediante los correspondientes monomios, y evita la asíntota vertical (X = 

k1/k2) de la nuliclina 
•

X = 0 del sistema de ecuaciones (34). 

 5.B. Concretando los parámetros de la siguiente manera (en unidades propias) (6): k1 = 

1, k2 = 1, k3 = 1, k4 = 1, k5 = 1, el sistema (34) pasa a ser 

 
2

6
(1 )
1

( )

Y XX X k X
X

Y X Yε

•

•

− ⎫= + − ⎪+ ⎬
⎪= − ⎭

 (35) 

 
 Hay un estado estacionario en X0 = Y0, para el cual k6 = 2/[X0(1+X0)]. La matriz 

secular es 

 

( ) ( )

2
0 0 0 0 0

62 2
0 000 0

2 1 4 3 11 2
1 11 1

o
Y X X X Xc k X g c g

X XXM X
a b a bε ε ε ε

− − ⎛ ⎞− + −⎛ ⎞= + − = = =⎜ ⎟⎜ ⎟+ ++= = +⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟= = − = = −⎝ ⎠ ⎝ ⎠
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 Sólo hay posibilidad de estado estacionario homogéneo inestable (To > 0) si c > 0, por 

tanto, Xo > 4,646. Tomando, pués X0 = 5, Y0 = 5, k6  = 1/15, la matriz secular es: 

 

     0

1 2
18 3M
ε ε

⎛ ⎞
⎜ ⎟=
⎜ ⎟⎜ ⎟−⎝ ⎠

 

y su To = (1/18) - ε. Mientras que su Deto = (11/18) ε > 0. Si ε < (1/13), el estado estacionario 

será inestable y surge un ciclo límite a su alrededor. 

 5.C. Introduciendo la difusión, las ecuaciones (34) se escriben 

 

 

2
21 2

5 6 x 2
3 4

2

7 8 y 2

X Y(k k X) Xk X k X D
t k k X r

Y Yk X k Y D
t r

⎫∂ − ∂
= + − + ⎪∂ + ∂ ⎪

⎬
∂ ∂ ⎪= − + ⎪∂ ∂ ⎭

 (36) 

 
 Usando las mismas constantes que en 5.B, se concreta como 

 

 
( )

2
2

2

2

2

(1 ) 1
1 15 x

y

X Y X XX X D
t X r
Y YX Y D
t r

ε

⎫∂ − ∂
= + − + ⎪⎪∂ + ∂

⎬
∂ ∂ ⎪= − + ⎪∂ ∂ ⎭

 (37) 

con 

2
x

n
2

y

1 2D n
18 3M

D n

⎛ ⎞− −⎜ ⎟= ⎜ ⎟
⎜ ⎟ε −ε −⎝ ⎠

 

cuya traza es 

Tn = (1/18) – (Dx + Dy)n2 

y cuyo determinante 
2 4(11/18) [(11/18) ]n y x x yDet n D D D D nε ε= − − +  

 Dado que Det0 = (11/18) ε > 0, se puede cumplir (Dy/18) > εDx, y la ecuación (17) si ε 

= 1 (lo cual, por cierto, significa T0 < 0), Dx = 1, Dy = 900; obteniéndose que por ejemplo p = 

0,0225 satisface las condiciones para Detn = - 0,03576 < 0. Para dicho valor p = 0,0225, la 

parte real de ω es 0,00354/2, mayor que la correspondiente a n = 0, que sería T0/2 < 0 (ya que 

es también Δ0 < 0, el estado estacionario homogéneo era un foco estable). 
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 En la versión original de Field y Koros para explicar la reacción de Belousov- 

Zhabotinskiy, el valor de k6, basado en la química del bromo [24], era  k6 = 8,375.10-6 (en 

unidades apropiadas). 

 6. Oscilador de Bruselas. 

 6.A. Este “Bruselator” es un famoso modelo, debido a los trabajos pioneros de 

Prigogine y colaboradores [25]. Aunque ha sido muy criticado por incluir una etapa 

trimolecular [26] (responsable del monomio ∼ X2Y), puede soslayarse tal dificultad 

introduciendo una tercera variable que se elimina adiabáticamente [27]. En todo caso sus 

ecuaciones diferenciales son: 

     
YXkXkY

YXkXkXkkX

2
65

2
4321

−=

+−−=
•

•

  (38) 

 Tiene estado estacionario en 

)
k
kkkk(

kk
kY,

k
kkkk

kX
6

54
32

16

5
0

6

54
32

1
0 −+=

−+
=  

Se pueden amoldar a estas ecuaciones polimerizaciones [0,1] y [0,2]. 

 6.B. En los estudios realizados del Brusselator [6] se suele suponer, por sencillez los 

valores, k1 = A, k2 = k5 =B y k3 = k4 = k6 =1 (en unidades adecuadas), con lo cual la ecuación 

(38) toma la forma: 

    
YXBXY

YXXBXAX

2

2

−=

+−−=
•

•

    (39) 

 
y así X0 = A, Y0 = B/A; la matriz secular es 

 
2 2

0 2 2

1 1c B g A B A
M

a B b A B A

⎛ ⎞ ⎛ ⎞= − = −
= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟= − = − − −⎝ ⎠ ⎝ ⎠

 

 
con T0 = B – 1 - A2, y Det0 = A2 > 0. Para B > 1 + A2 , se tiene T0 > 0, y hay un ciclo límite 

rodeando al estado estacionario inestable. 

 6.C. Teniendo en cuenta la difusión, el sistema (39) se escribe 

    

2

2

y
2

2

2

x
2

r
YDYXBX

t
Y

r
XDYXXBXA

t
X

∂
∂

+−=
∂
∂

∂
∂

++−−=
∂
∂

   (40) 
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y la matriz es ahora 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−−−

−−
=

2
y

2

22
x

n nDAB
AnD1B

M  

 
cuya Tn = B – 1 - A2 - (Dx + Dy)n2, y cuyo determinante es: 

 
Detn = A2 - n2[(B - 1)Dy - A2Dx] + DxDyn4 

 
 Se puede tener inestabilidad del estado estacionario homogéneo, desde luego, si Tn > 

0, o sea si B > B1(n) = 1 + A2  + (Dx + Dy)n2. El valor crítico B1 depende de n; su valor 

mínimo (14) se alcanza (dB1/dn = 0) cuando n = 0 (fluctuación homogénea), y vale B1min = 1 

+ A2, como en el caso no difusivo, confirmando en efecto que la difusión no desestabiliza un 

estado estacionario homogéneo que sea estable por causa de T0 < 0. También puede haber 

estado estacionario homogéneo inestable si Detn < 0, lo que implica que 

 
2

2 2x
2 x 2

y y

D AB > B (n) = 1 + A + D n +
D D n

 

 
el mínimo valor del límite crítico B2 se obtiene (dB2/dn = 0) para 

 

yx

2
2

DD
An =  y vale 

2

y

x
min2 D

DA1B ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=  

 
 
 Es obvio que si Dx = Dy, será B1min = 1 + A2 < B2min = (1 + A)2, lo que significa que al 

ir aumentando B se alcanza antes la bifurcación para B1min, en la cual la perturbación 

homogénea es la más rápida, y no se verán estructuras espaciales inhomogéneas ( sí se verá el 

ciclo límite, porque B2 > B > B1 implica T0 > 0). Pero si Dy >> Dx , entonces puede ocurrir 

que B2min < B1min (en el caso extremo (Dx/Dy) → 0, B2min= 1 < B1min= 1 + A2), y al aumentar B 

acaece antes la bifurcación en B2min, y aparece (orden a través de fluctuaciones) una estructura 

disipativa correspondiente a n2 = (A2/DxDy)1/2. 

 Por ejemplo, si A = 2, B = 2 (T0 = -3, Det0 = 4 > 0, Δ0 = -7 < 0, el estado estacionario 

homogéneo era un foco estable), para Dx = 1, Dy = 25, el valor de p = 0,4 satisface todas las 

condiciones, haciendo Detn = -0,4; la parte real de ωn será 0,0596/2, mayor que la de ωo, que 

sería T0/2 < 0. 
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7. Oscilador de van Der Pol (ampliado) [6,28]. 

7.A. Para adaptar las variables de este sistema (en principio, concebido como oscilador 

electrónico) para representar concentraciones, se precisa limitar en el plano de fases la cuenca 

de atracción del ciclo límite que aparecerá en caso de ser inestable el estado estacionario no 

difusivo [6]. La frontera delimitadora de dicha cuenca se construye empleando técnicas 

similares a las usadas para el recinto de Poincaré-Bendixson [29]. Las ecuaciones 

diferenciales son: 

 

 
2 3

1 2 3 4 5

6 7

X k X k X k X k k Y

Y k X k

•

•

⎫= + − + − ⎪
⎬
⎪= − ⎭

 (41) 

 
 Ellas pueden servir de soporte a polimerizaciones [0,1], [0,2], [1,1] y [2,1], 

englobando los términos ∼ -X en el de k1, y a las [2,2], englobando el término ∼ -X2 como 

parte del monomio en k2. 

 7.B. Introduciendo el cambio definido por las ecuaciones (41), y con las relaciones (6): 

 
2

1 0 0 2 0 3
2 3

4 0 0 0 0 5 6 7 0

k 3 X 2 X , k 3 X , k

k X X X 3Y , k , k , k X

= α − λ − ρ = ρ + λ = λ

= ρ + λ − α + = β = γ = γ
 

 
la ecuación (41) se convierte en la ecuación (42): 

     
2 3

•

•

⎫= + − − ⎪
⎬
⎪= ⎭x

x x x x y

y

α ρ λ β

γ
   (42) 

 
cuyo estado estacionario es x = 0, y = 0. Se tiene (despreciando los términos infinitésimos de 

orden superior al primero): 

 0

α -β
M =

γ 0
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
cuya T0 = α > 0 y cuyo Det0 = βγ > 0. El estado estacionario no difusivo es inestable siempre 

si α > 0, y existe en torno de él un ciclo límite. 

 7.C. Teniendo en cuenta la difusión, la ecuación (42) se modifica según: 

 

2
2 3

2

2

2

x

x y

xx x x x y D
r

yy D
r

α ρ λ β

γ

•

•

∂
= + − − +

∂
∂

= +
∂

 (43) 
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siendo 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−γ

β−−α
=

2
y

2
x

n nD
nD

M  

 
cuya Tn = α - (Dx + Dy)n2, y cuyo determinante es Detn = βγ - n2αDy + DxDyn4. Puede 

cumplirse que Detn < 0, pero para que la suma p1 + p2 sea positiva se requiere que α > 0; es 

evidente que se puede tener un estado estacionario homogéneo inestable, pero no proviniente 

de la inestabilización por difusión del sistema estacionario homogéneo por difusión, puesto 

que ya era inestable (α > 0, T0 > 0) en el caso no difusivo. 

 

RESUMEN Y CONCLUSIONES 

 
Excepto la polimerización [1, 2], las restantes del esquema clasificatorio dado pueden 

acoplarse al menos a uno, frecuentemente a varios, de los siete osciladores citados. En todos 

los modelos es posible bifurcación supercrítica de Hopf, con aparición de ciclo límite, en 

ausencia de difusión. En todos los casos, se puede tener estado estacionario homogéneo 

inestable en presencia de difusión, y excepto en el modelo de van der Pol, la difusión puede 

desestabilizar un estado estacionario homogéneo que era estable en ausencia de ella. Por el 

momento es difícil decir qué aplicaciones científicas o tecnológicas podría tener el marco 

teórico aquí desarrollado [30]. 
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