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INTRODUCCIÓN 

 

 En un tiempo se creyó que el ordenamiento de un sistema en el espacio y/o en el 

tiempo, estaba asociado únicamente a configuraciones de equilibrio (como sucede, por 

ejemplo, en las estructuras cristalinas [1,2]. Hoy en día ya se estudian procesos de auto-

organización que no responden al criterio de la termodinámica clásica, de buscar la 

estabilidad de un equilibrio [3-5]. La escuela de Prigogine [6, 7] ha sido pionera en el 

desarrollo de posibles métodos de operación de esas “estructuras disipativas” alejadas del 

equilibrio [5]. Antes de este marco teórico se conocían casos experimentales de tales 

procesos. 

 Un ejemplo son los “anillos de Liesegang”  [8,9]: se producen, típicamente, cuando 

una sustancia se difunde a través de un gel que contiene otra, dándosemuna reacción de 

precipitación, que a veces es espacialmente periódica [9-13]. Flicker y Ross [14] han 

elaborado un mecanismo teórico, basado en la inestabilidad química, para dar cuenta del 

fenómeno de Liesegang [9]. En este artículo, se propone un modelo similar, para una 

versión de los anillos de Liesegang adaptada a la química de polimerización, un campo 

para el cual son todavía escasos los modelos [15] de auto-organización fuera del equilibrio. 

 

MECANISMO 

 

 Se pretende que este modelo funcione en el siguiente contexto: inicialmente se tiee 

un bloque C (sólido, gel [12] o suspensión coloidal [14] muy viscosa, para poder 

despreciar los efectos de convección [10]), constituido por monómero Z. A través de este 

bloque de homopolímero, se difunde una solución iónica del monómero X, y entonces X 

va sustituyendo a Z en ciertas regiones Y del bloque C, originándose un copolímero de X y 

de Z. Con el mecanismo a continuación se propone, y en adecuadas condiciones de 
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difusión, se puede instaurar una estructuración: una distribución espacial periódica de las 

regiones Y (ricas en monómero X que sustituye al Z en el bloque C): se obtiene un 

copolímero “en franjas”. 

 El mecanismo consta de las siguientes etapas: 

 

     X    (1a) 

     
1k

C Z

X Y ZY

 


  
  (1b y 1c) 

 

 En la etapa 1a, el sustituyente X es introducido al sistema, a flujo constante .  La 

sustitución se da en dos etapas (1b y 1c): inicialmente se deja un espacio libre, 

desprendiéndose de él un Z, a continuación X se incorpora auto-catalíticamente. A mayor 

grado de sustitución (Y) en una región, tanto más probable es que prosiga la sustitución en 

ella. Flicker y Ross [14] justifican la autocatálisis admitiendo que en torno de Y se forma 

una doble capa eléctrica [16] (ello es posible si se trata de una polimerización iónica: la 

disolución de X es un electrólito), de modo que en ella los coeficientes de difusión de X 

sean menores  que en el resto de la disolución: esto causa aglomeración de X en torno de Y, 

con mayor oportunidad de incorporar X a donde ya se había incorporado 

 

    2k
Z Y C       (1d) 

    FZ C      (1e) 

 

 La etapa (1d) es una terminación del proceso de sustitución: Z se reincorpora al 

bloque. La polimerización en sí que origina el homopolímero inicial (etapa 1e); se supone 

que sigue siendo posible, y que es de orden uno respecto de Z. Por supuesto, tendría una 

estructura fina del tipo: 

     

oR R

R Z K

R C



  

 

 

 

siempre que la contribución cinética sea isomorfa [17]. 

 Análisis en el caso no-difusivo. Los términos de reacción correspondientes al 

mecanismo (1) se escriben (con 
•
 = d/dt) 
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1

1 2

2

X = - k XY

Y k XY k ZY

Z C k ZY FZ












 

   


     (2) 

se reduce a dos variables si se supone que siempre 0.Z


  

    
1

2
1

2

X = - k XY

k CY
Y = k XY -

k Y + F












     (3) 

si C > , existe un estado estacionario Xo = [k2(C- )]/k1F; Yo = F/[k2(C- )]. Con las 

notaciones [17] 

    o

0 o o

YX Y
x = ; y = ; μ = ; u =

X Y X C -




   (4) 

el sistema queda 

    

= 1 -

(1 + k)y
= -

+ 1

dx
xy

d

dy
xy

d uy












     (5) 

por supuesto, el estado estacionario es xo =1, y0 = 1. Linealizando (5) en torno a él, la 

matriz de los coeficientes del sistema variacional linealizado es 

    

1 1

1
(1 )

oM 

 

  
 
   

     (6) 

cuya traza vale 

    1
(1 )

oT


 
 


      (7) 

y cuyo determinante vale 

    
0

1
0

(1 )
D

 
 


      (8) 

 Se observa que para  = o = u/(1 + u), es To = 0; así, cuando el parámetro pequeño 

 va disminuyendo y pasa por este valor crítico 0, se produce una bifurcación de Hopf 

[18,19]: el estado estacionario pasa de ser foco estable ( 0  To 

- 4Do  -

4D0 < 0, foco), a ser centro ( 0  To 

- 4Do  -4D0 < 0), y luego a ser 
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foco inestable ( 0  To  inestable; (

- 4Do  -4D0 < 0, foco); y surge un 

ciclo límite entorno al foco inestable: las cantidades X e Y ejecutan oscilaciones sostenidas. 

Al ser Do > 0, esta es la única inestabilización posible del estado estacionario no difusivo. 

 Incluyendo la difusión. Al tener en cuenta la difusión [19] espacial del monómero 

X y la de la región sustituida Y (ésta última puede conceptuarse como debida a un 

engrosamiento del material, causado por un aumento del volumen excluido, en caso de que 

 sea más voluminoso que Z), las ecuaciones (3) se deben alterar. Se considera [4] una sola 

dimensión (r)- por ejemplo, si se mantiene (en una geometría relativamente larga y 

estrecha, resultando: 

    

2

1 2

2

2
1 2

2

=

k CY
= -

x

y

X X
k XY D

t r

y Y
k XY D

t k Y F r


 

 
 


  

   

    (9) 

donde Dx y Dy son los coeficientes de difusión respectivos. 

 Usando la notación (4) complementada con 

    
1 0 1 0

; ;
yx x x

x y

y y

DD D
h

k Y k Y D


 


                (10) 

se llega al sistema 

    

2

2

2

2

= 1 -

1 (1 + )y
= [ - ]

+ 1

x

x

dx x
xy

d r

dy y
xy

d uy r







 

 





 
 

            (11) 

 El estado estacionario homogéneo (SSH), uniforme, es el mismo no-difusivo Xo =1, 

Yo =1. Su estabilidad se estudia análogamente, linealizando (11) en torno al estado 

estacionario homogéneo. Para más concretar, se suponen soluciones (“perturbaciones”) de 

la forma 

    . cos

. cos

t

o

t

o

x x Ae nr

y y B e nr





  


 

            (12) 

 son las raíces de la ecuación característica: 

     2 0n nT D                (13) 

donde Tn y Dn son la traza y el determinante de la matriz de coeficientes del sistema 

variacional linealizado: 
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2

n 2

1 1

M = 1

(1 )

x

y

n

n






  

   
 
   

          (14) 

esto es, 

 Tn = To – n
2
 (x +  y)          (15) 

2 4( )
(1 )

x
n o y x y

u
D D n n

u


  


   


           (16) 

 

 El estado estacionario homogéneo será inestable si alguno de los autovalores de  

posee parte real positiva [14,19]. Ello puede deberse a Tn > 0 (pero por (15), esto implica 

To > 0: el estado estacionario homogéneo no difusivo era ya inestable (oscilaciones de 

ciclo límite); no cabe hablar de una desestabilización del estado estacionario homogéneo). 

La condición Tn > 0 se traduce en: 

    
    

1 21 1 x y

u

u n
 

 
 

   
 

        (17) 

 

 La función 1(n) es siempre decreciente y carece de máximo relativo, pero su 

máximo absoluto se da para n = 0 (perturbación inicial homogénea), y vale 1max = u/(1 + 

u) = 0. 

 Otra posibilidad de inestabilidad del estado estacionario homogéneo es Dn < 0. Es 

más, puede ocurrir que sea a la vez To < 0: el estado estacionario homogéneo difusivo sí es 

estable, y así la difusión lo desestabiliza: se instaura un “orden a partir de fluctuaciones”. 

Denotando p = n
2
, Dn < 0 se escribe: 

    
 

2

0 0
1

x
y x y

u
D p p

u


  



 
      

        (18) 

 

 Esto puede cumplirse en un cierto intervalo 0 < p <p2, si se cumplen 

     0
1 2 0

x y

D
p p

 
          (19a) 

    
 

1 2 0
1

x
y

u
p p

u





   


       (19b) 

  
 

2

0Discriminante(18) 4 0
1

x
y x y

u
D

u


  



 
      

     (19c)  
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 Por (8), D0 > 0, y (19a) se verifica; y si se cumple 

    
02

(1 )

x
y y y

u
D

u


  


 


    (20) 

también lo harán (19b) y (19c). 

 Por otra parte, (18) se traduce en 

    2 2

11

1

x

y x y

pu

u p p


 

  

   
    

     

   (21) 

 

  La función 2(p) tiene máximo relativo en p = n
2
 = (1+ 1 u )/ux, cuyo 

valor es 

2

2max

u 1 + u  h´
 = 

1 + u 1 1 + u 1 1 + uu


 
 
    

  

. Es fácil probar que si 

    
  1 1 1 1

1

x

y

u u u
h

u u





     
     

 (22) 

 

será 2max > imax. 

 En resumen, si se cumple (22), al ir disminuyendo el pequeño parámetro , se 

alcanza antes el valor crítico; el estado estacionario homogéneo es inestable a 

perturbaciones homogéneas (si bien ya era inestable sin difusión)[18], y se producirá una 

auto-oscilación homogénea, el ciclo límite: una “copolimerización oscilante”. Por el 

contrario, si se cumple (22), el estado estacionario homogéneo se inestabiliza a 

perturbaciones inhomogéneas [18]. Ya que se alcanza primero el valor crítico 2. Aparece 

un orden por fluctuaciones [5,18,19]. 

 Es de señalar que al ser (11) un sistema en derivadas parciales, las soluciones deben 

someterse a condiciones iniciales y de frontera [3,4]. La forma cossunusoidal elegida para 

(12) exige que a t = 0, r = 0 (inicialmente y en el extremo inicial de C respecto a la 

difusión) sean x = x0 + A e y = y0 + B. Si se supone que a t = 0, r = L (inicialmente y en el 

otro extremo de C) son x = x0; y = y0, estado estacionario homogéneo no perturbado, se 

precisará cos nL = 0, lo cual cuantiza el número de ondas  n: nL = (2m + 1)/2 con m = 0, 1, 

2, 3, … 

 Un ejemplo numérico de lo antedicho es (datos en unidades apropiadas): u = 3, h = 

4 (con lo cual se cumple (22) al ser 2max =  1 > 1max = 0 = 0,75). Para un  = 0,8, se 

tendrían To = -0,0625, D0 = 0,3125 y 0 < 0; el estado estacionario homogéneo no difusivo 
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es foco estable. Con estos datos, la condición (18) se traduce en 

 

   23
0,3125 0

3,2

x
n y x yD p p


  

 
     

 
   (23) 

 

 

Figura 1. Copolímero a franjas (7 bandas composicionales). 

 

 Pueden ahora escogerse unos ,x  ,y  compatibles con h = 4, y tales que para un 

valor predeterminado de p sea Dn < 0 pero aproximadamente D  0. El motivo de este 

proceder es que para Dn = 0 y Tn < 0 (al ser To < 0), en (13) una de las raíces es  = Tn < 0 

(la solución se amortigua con el tiempo y la estructura llega a desaparecer), y la otra es  = 

0, correspondiente a una estructura estática. Por ejemplo, con  y = 2,33.10
-5

, 
x = 4,32.10

-5
, 

para  = 625
2
 es Dn = -1,18.10

-4
  0. Para este valor de p = 625

2 
 n = 25. Si la 

longitud dl bloque se supone L = 0,5, el número cuántico vale m = 12, y la solución 

quasiestática [3,5,7] será y = B.exp
t
.cos (25r/2L) (véase la Figura 1) que representa un 

copolímero con 7 franjas de composición más rica en monómero X. 

 Por el momento es difícil decir qué interés, por ejemplo tecnológico, puede tener la 

obtención de estos materiales copolímeros con ordenamiento espacial periódico. En el 

campo de la Geología se ha especulado con que los fenómenos de Liesigang pudieran ser 

responsables de los anillos de ciertos minerales (ágatas, malaquitas, etc….) [11,12,20]. 

Existe también una línea de investigación en Biofísica [18,19] que tiende a considerar la 

estructura primaria de las proteínas como determinada por este tipo de ordenamiento, más 

que por la clave genética del DNA. 
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