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RESUMEN 

Se toma como base una polimerización iniciada por radicales iniciador, propagada por adiciones 

sucesivas de monómero a los propagadores, y con terminación por encuentros bimoleculares entre éstos: 
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Análogamente a un anterior modelo, se toma como fuente de auto–catálisis la renovación del 

primer propagador a partir de una forma dímera inestable, que en este caso, sin embargo, procedería de un 

radical S2 isómero de R2: 
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La autocatálisis se completa con la eliminación de Ri por un tercer cuerpo Z que fluye a través del 

sistema (creando así un monomio michaelisiano en las ecuaciones cinéticas): 
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Dichas ecuaciones se analizan por técnicas de plano de fases, probándose la posibilidad de 

oscilaciones de ciclo límite en torno a un estado estacionario de foco inestable. 

Palabras claves: estado estacionario, ciclo límite, auto–catálisis, monomio michaelisiano. 

 

INTRODUCTION 

 Este artículo presenta un nuevo intento teórico de modelo de oscilaciones químicas en 

reacciones de polimerización [1–3]. En recientes propuestas [4] se ha estudiado la posibilidad de 

que las terminaciones de los propagadores por transferencia de reactividad al monómero produzcan 

nuevamente, a partir de éste, el primer propagador, constituyendo una especie de auto–catálisis. En 

particular se vio que dicho efecto podrá principalmente surgir por intermedio de una forma dímera 

nacida de la terminación del segundo propagador [4]. El modelo que aquí se propone utiliza esta 

idea, pero el estado dímero se obtiene de un isómero del segundo propagador, obtenido en una etapa 

de propagación paralela, a partir del primer propagador, lo que permite incluir el segundo dentro de 

la suma total de los restante propagadores. 

 La concentración total de estos, y la del primero, serían las dos variables elegidas como 

oscilantes. La Sección 2 describe el esquema cinético, y en la Sección 3 se hace su análisis a fin de 

probar la existencia posible de un ciclo límite. 

mailto:issa.katime@ehu.es


Revista Iberoamericana de Polímeros y Materiales                     Volumen 18(6), Noviembre de 2017 
Katime y Pérez-Ortiz                 Modelo de oscilaciones químicas 

      272       Rev. Iberoam. Polimeros y Materiales, 18(6), 271–279 (2017) 

MECANISMO 

 La descomposición del iniciador en dos radicales, y posterior reacción de ellos con el 

monómero M, constituye la iniciación de la polimerización [5,6]: 
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 La propagación ocurre por adición de M paso a paso a los propagadores Rj: 

    1 ( 1,2,3,.... )pk

j jR M R j       (2) 

 Para las terminaciones, se retoma la clásica reacción de dos propagadores; pero es lógico 

suponer que ésta transcurre a velocidades diferentes en función de las longitudes de cadena cinética 

de aquellos [7,8]. En efecto, cuantas más largas sean estas más probable será que la cadena se oville 

sobre sí misma ocultando el extremo reactivo (radical) que debe unirse al del otro propagador 

implicado. Un tratamiento a groso modo buscado de este efecto puede ser considerar diferentes 

procesos según la participación, o no de R1 en ellos: 
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  3
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 A este esquema básico se añadirán los procesos de “autocatálisis + Michaelis” [9,10], ya 

sugeridas como modelos mínimos [1,2] para obtener oscilaciones de tipo ciclo límite. Para el 

primero se plantea el bloque: 
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donde en lugar de obtener la forma dímera inestable D a partir de R2, se hace a partir de su isómero 

S2. La etapa con 
´
pk  puede pertenecer a una propagación paralela (con propagadores Sj isómeros de 

los Rj), pero en (6) basta considerarla aisladamente. 

 El término michaelisiano procede del típico bloque cinético 
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ANÁLISIS 

 Las ecuaciones cinéticas [5,11] para el esquema (1) + (2) + (3) + (4) + (5) + (7) serán 



Revista Iberoamericana de Polímeros y Materiales                     Volumen 18(6), Noviembre de 2017 
Katime y Pérez-Ortiz                 Modelo de oscilaciones químicas 

      273       Rev. Iberoam. Polimeros y Materiales, 18(6), 271–279 (2017) 

1 1

2 ´
1 1 2 1 1 2 1

2 1 2 1 2 3 2 2

1 2

3 2 3 2 1 3 3 3

2 · ·

· . . · · · . . · · 2 · · · ·

· · · · · · · ·
· ·

· · · · · · · ·

d inic

inic p ter ter p ter h

p ter ter p

p ter

p p ter ter

b k I k M

R k M k R M k R k R R k R M k S M k I D k Z R

R k R M k R R k R R k R M
R k R M k

R k R M k R M k R R k R R











 

       

   
 

   

 
 
 
 
 

2

1 3

2

´
2 1 2

1

· · ·

· · · ·

· · · ·

· · ·

ter

tr h

p ter

R R k R

D k S M k I D

S k R M k S M

Z C F Z k Z R









                            

                            

 

 

  





















     (8) 

donde 
2

.j
j

R R




 . Las concentraciones de M, I, C, se considerarán como constante (por ejemplo, 

por hallarse las mencionadas sustancias en gran exceso) y se englobarán en las constantes cinéticas 

según las notaciones: 

   ´2 , , ´ . , .d p p trA k I p k M p k M k M       (9) 

 Se escogieron R1 y R como las dos variables principales del modelo; para reducir las 

ecuaciones (8) a solamente dos, se admite que en todo momento 20, 0, 0, 0b D S Z
   

     [12]. 

Con esto, resulta: 
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 En un estado estacionario, para R1 = (R1)0, R = R0, sería 1 0, 0,R R
 

  y se cumpliría 
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 Es conveniente reformular el sistema (10) en términos de nuevas variables {X,Y}, y nuevas 

notaciones [8, 13], definidas como sigue: 
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            (12) 

obteniéndose el sistema: 
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 Evidentemente, el estado estacionario ocurre ahora para X = X0 = 1, Y = Y0 = 1; y las 

relaciones (11) se reescriben como 
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 Teniendo esto en cuenta, la matriz jacobiana de (13) vale [14–16] 
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 La condición para que su determinante sea positivo [15] (lo cual excluye que el estado 

estacionario sea un punto de ensilladura) es: 
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·
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Si además su traza es positiva [15], el estado estacionario es foco inestable (si el 

determinante  = T
2
 – 4Det < 0), o nodo inestable (si  > 0). La condición de traza positiva es: 

   
2 ´

1 2 30: 1 2T m                (17) 

 La compatibilidad de (16) y (17) exige que: 
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     
2´

2 3 2 3· 2           (18) 

 Para ello es necesario que '
2 2θ > 4θ ,  es decir R0 > 4·(R1)0. 

 En condiciones ligeramente supercríticas de (17), con la traza solo ligeramente positiva, T  

  0, si se cumple (16) está asegurado que  = T
2 

– 4Det – 4·Det < 0, y el estado estacionario será 

foco inestable. 

 

Figura 1. Plano de fases del sistema (13). 

 

 Para el estudio en el plano de fases {X,Y} (véase la Figura 1), se consideraron las nuliclinas 

de (13) [17]. La nuliclina característica 0X


  es: 
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 Si  >> 1, el valor X = 1 será grande y los correspondientes términos /X, /(X + m) 

serán pequeños; despreciándolos, se concluye que (19) corta al eje de las X en X  XQ1  /1. 

 Para X  0, Y   ; para X   , Y  – . Derivando (19), resulta 
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 Para un valor de X relativamente pequeño, despreciando el término 1, es dY/dX = 0 para X 

= Xmin m/( /   – 1) con ).   Para otro valor de X relativamente grande, despreciando el 
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término /X
2
, es dY/dX = 0 para X = Xmax 1/ m    (con 2

1).m   En tales condiciones, la 

característica (19) posee perfil sigmoidal [1, 13].  

 La nuliclina 
•

Y 0  es 

     
2

3

´

2

Y
X

h Y







      (21) 

 

 Para Y = 0, X = 0; pata Y = h/ ´

2 , X   , de modo que la recta Y = h/ ´

2  = p/2 es una 

asíntota de (21). 

 Se puede construir fácilmente (Figura 1) un recinto de no–retorno para las trayectorias de 

fase [18], delimitado por la línea Q1Q2Q3Q4Q1. La prueba de que las trayectorias no pueden salir de 

dicho rectángulo, una vez que han entrado en él, se basa en que el flujo del campo de direcciones de 

(13), definido según 

     ,n X Y
  

  
 

     (22) 

(donde  es el producto escalar; n  es el vector normal a Q1Q2Q3Q4Q1 en cada punto de esta 

frontera, con sentido hacia afuera del rectángulo) no es nunca positivo para punto alguno de la 

frontera. 

 Se parte de Q1, intersección de (19) con el eje X (aproximadamente, Q1  (/,0)), y se 

traza el tramo vertical Q1Q2 hasta alcanzar la 0Y


 . Si / es grande, la intersección Q2 estará 

próxima a la asíntota, Q2  (/h/´nQQn  = (1,0), 0X


 (= en Q2), 0X


  (= en 

Q1). 

 Luego se toma el tramo horizontal Q2Q3, hasta alcanzar de nuevo a 0X


 .  Si p/2 es 

grande, despreciando en (19) los términos , X, /(X + m)
2
, Q3 (a/p, p/2). En [Q2Q3[, n  = (0,1), 

0,Y


  (= en Q2), 0Y


  (= en Q2). 

 Se desciende en vertical Q3Q4 hasta el eje X. Aproximadamente, Q4  (/p, 0). En 

[Q3Q4[, n = (–1,0), 0X


 (= en Q3), 0X


    (= en Q3). 

 Cierra el recinto el tramo Q4Q1 del eje X, en el cual n = (0,–1), 0, 0.Y Y
 

     Por 

tanto, si el estado estacionario es foco inestable, por el teorema de Poincaré–Bendixson, dentro del 

rectángulo delimitado por Q1Q2Q3Q4Q1 y entorno al citado estado estacionario foco inestable, existe 

al menos un ciclo límite de (13). 
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 Por consiguiente, las concentraciones R1 y 
2

j
j

R R




 efectuarán oscilaciones sostenidas. Si 

los parámetros de la ecuación (13) para 
•

X 0  son valores grandes 
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 Siendo  un parámetro pequeño [19] (eventualmente   0), de modo que (13) se pueda 

escribir 
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 Puede intuirse la forma del ciclo límite extremo para   0 (véase la Figura 2). En efecto, 

se mantiene la forma sigmoidal de la característica  , 0.X Y   Para 
•

0, X = σ(X,Y)/ .   

 
Figura 2. Ciclo límite de relajación. 

 

 Como la pendiente de la trayectoria de fases es 

     
 
 

,

,

N X YdY Y

dX X YX








      

 Para 0, / 0dY dX


   (el punto de fase se mueve paralelamente al eje X) excepto, de 

nuevo, en un entorno de orden  de  , 0.X Y   

 Así, el punto de fase se moverá lentamente por la curva L1L2 de S = 0, hasta que en L2 

abandona el entorno de dicha rama lenta, y salta rápidamente por la horizontal L2L3 hasta llegar a la 
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otra rama lenta de la característica. Recorre lentamente el tramo L3L4, y en L4 deja de nuevo el 

entorno de S = 0 y salta rápidamente por la horizontal L4L1, cerrándose el ciclo, el ciclo límite 

extremo (para el “caso extremo”   0). Se tienen entonces las llamadas oscilaciones de 

relajación, con cambios muy rápidos de las concentraciones, alternados con períodos de variación 

relativamente lentos [20]. 

 A modo de ejemplo numérico, con los valores (en las adecuadas unidades):  = 1/,  = 2/, 

m = 1, 1 = 1/, 2= 12/,  = 22/h´23 = 1, resultan T = (7/2) – 3 > 0 para  < crit 

= 7/6, Det = 3/2 > 0 para todo ; en condiciones   Det  

y el estado estacionario es foco inestable. Entonces (, la característica posee mínimo en X 

0,284, máximo en X 3,51, corta al eje X en X = 22,1; y el recinto de no–retorno tiene por 

vértices Q1(22,1, 0), Q2(22,1, 1,846), Q3(0,05, 1846), Q4(0,05,0), como los adecuados tanteos 

permiten calcular. 

RESUMEN Y CONCLUSIONES 

 

 Se ha estudiado una polimerización con iniciador, propagación por adición de monómero y 

terminación por recombinación bimolecular de radicales propagadores [6]. Para estas 

recombinaciones se admiten valores distintos de las constantes cinéticas, en función de las 

longitudes de cadena implicadas: parece razonable que cuanto más largas sean éstas más difícil y 

lento son los procesos de recombinación [8], esto es kter1 > kter2 > kter3. 

 En el ejemplo numérico propuesto, con  = 1 se tienen (cf. definiciones (12)): 1 = kter1·(R1)0 

= 1, 2 = kter2·R0 = 12, ´2 = kter2·(R1)0 = 1, 3 = k3·R0 = 1. Por división, se deduce R0 = 12·(R1)0 (la 

condición de compatibilidad entre (16) y (17) exige 4·(R1)0 < R0, kter1 = kter2 (igualdad atribuible a 

que en ambas etapas es decisiva la mayor movilidad y simplicidad del primer propagador R1), y kter2 

= 12·kter3, de acuerdo con el razonamiento postulado [1,8]. 

 Las concentraciones de iniciador y de monómero se suponen constantes en este modelo; 

puede cumplirse mientras dichas sustancias se mantengan en gran exceso respecto a las otras 

variables. 

 Se buscaron oscilaciones sostenidas del tipo ciclo límite [14], en base al modelo mínimo que 

incluye auto–catálisis y término michalisiano [2,10]. Como posibles variables oscilantes se 

eligieron las concentraciones del primer propagador (R1), y la total del resto de propagadores 

(
2

j
j

R R




 ). 

 El término michealisiano [9] k·C·R1/(k·R1+F) se obtiene de la forma habitual, introduciendo 

una eliminación de R1 por reacción con una sustancia Z que fluye a través del sistema [1,10]. 

 Para el término de auto–catálisis en R1 se usó la idea de una degradación de una forma 
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dímera inestable [4], producida tras reacción de transferencia al monómero; pero a fin de no 

introducir perturbaciones en la inclusión de R2 en la variable oscilante 
2

j
j

R R




 , no se utilizó este 

radical R2 en el esquema, sino un isómero del mismo, S2, que además había de obtenerse no de R2, 

sino de R1 en una etapa inicial de propagación paralela. No se ha hecho ningún intento de investigar 

dicha propagación y cómo se reflejarán en ella las oscilaciones de la propagación principal, en R1 y 

en R. 

 Las ecuaciones cinéticas del mecanismo se redujeron a dos variables con la suposición 

habitual de que las restantes logran un rápido estado quasi–estacionario [12]. Se reescribe el sistema 

en variables adimensionales [8] X  R1, Y  R, y se derivan condiciones para que se tenga un 

estado estacionario foco inestable. 

 La sigmoidalidad de la nuliclina característica [17] facilita construir en el plano de fases un 

recinto de no–retorno para las trayectorias [19], y entonces por el teorema de Poincaré–Bendixson 

[18] se demuestra la existencia de ciclo límite. Asimismo, es fácil la elección de un parámetro 

pequeño que posibilita la ocurrencia de oscilaciones de relajación, con saltos rápidos en la 

concentración del primer propagador [19, 20]. 
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