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RESUMEN
Se toma como base una polimerizacion iniciada por radicales iniciador, propagada por adiciones
sucesivas de monémero a los propagadores, y con terminacion por encuentros bimoleculares entre éstos:

I - 2b
b+M—>R
Ri+M—>R;,

R +R; = Poly,,

Analogamente a un anterior modelo, se toma como fuente de auto—catalisis la renovacion del
primer propagador a partir de una forma dimera inestable, que en este caso, sin embargo, procederia de un
radical S, isdbmero de R,:

R+M — S,
S, +M >R +D
l+D — 2R

La autocatélisis se completa con la eliminacion de R; por un tercer cuerpo Z que fluye a través del
sistema (creando asi un monomio michaelisiano en las ecuaciones cinéticas):

{C — Z — producto 1

Z + R — producto 2

Dichas ecuaciones se analizan por técnicas de plano de fases, probandose la posibilidad de
oscilaciones de ciclo limite en torno a un estado estacionario de foco inestable.
Palabras claves: estado estacionario, ciclo limite, auto—catalisis, monomio michaelisiano.

INTRODUCTION

Este articulo presenta un nuevo intento tedrico de modelo de oscilaciones quimicas en
reacciones de polimerizacion [1-3]. En recientes propuestas [4] se ha estudiado la posibilidad de
que las terminaciones de los propagadores por transferencia de reactividad al monémero produzcan
nuevamente, a partir de éste, el primer propagador, constituyendo una especie de auto—catalisis. En
particular se vio que dicho efecto podra principalmente surgir por intermedio de una forma dimera
nacida de la terminacion del segundo propagador [4]. EI modelo que aqui se propone utiliza esta
idea, pero el estado dimero se obtiene de un isémero del segundo propagador, obtenido en una etapa
de propagacion paralela, a partir del primer propagador, lo que permite incluir el segundo dentro de
la suma total de los restante propagadores.

La concentracion total de estos, y la del primero, serian las dos variables elegidas como
oscilantes. La Seccidn 2 describe el esquema cinético, y en la Seccion 3 se hace su andlisis a fin de

probar la existencia posible de un ciclo limite.
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MECANISMO

La descomposicion del iniciador en dos radicales, y posterior reaccion de ellos con el

monomero M, constituye la iniciacion de la polimerizacién [5,6]:

| —X > 2b
» 1)
b + M inic R]_
La propagacion ocurre por adicion de M paso a paso a los propagadores R;j:
R +M >R, (j=12,3,...0) )

Para las terminaciones, se retoma la clasica reaccion de dos propagadores; pero es logico
suponer que ésta transcurre a velocidades diferentes en funcién de las longitudes de cadena cinética
de aquellos [7,8]. En efecto, cuantas mas largas sean estas mas probable serd que la cadena se oville
sobre si misma ocultando el extremo reactivo (radical) que debe unirse al del otro propagador
implicado. Un tratamiento a groso modo buscado de este efecto puede ser considerar diferentes

procesos segun la participacion, o no de Ry en ellos:

2R —=— Poly,,, (j1,2,3,....0) 3)
R +R; —*2— Poly,, , (j12,3,....,0) (4)
R +R, —*=— Poly,, , (i 23,....90)(j 2,3,....,) (5)

A este esquema basico se afiadiran los procesos de “autocatalisis + Michaelis” [9,10], ya
sugeridas como modelos minimos [1,2] para obtener oscilaciones de tipo ciclo limite. Para el

primero se plantea el blogue:

R+M — s,

S, +M —%3D+R (6)

D+ 3 2R
donde en lugar de obtener la forma dimera inestable D a partir de R, se hace a partir de su isomero
S,. La etapa con k'p puede pertenecer a una propagacion paralela (con propagadores S; isomeros de

los Rj), pero en (6) basta considerarla aisladamente.

El término michaelisiano procede del tipico bloque cinético

C-H>7Z—"F>
Z+R >

()

ANALISIS

Las ecuaciones cinéticas [5,11] para el esquema (1) + (2) + (3) + (4) + (5) + (7) serén
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b=2k1 —k M

Ri=k M —Kk,-R.M =k, R* =K, R -R+K, R.M +k,, S, M +2k -1 D-kZR,
éz = kpRlM - klerZIRl'RZ - kterBIRZIR - kp'RZ.M

. F.z = kpRlM - klerZ'Rl.R _kterS'R2
R3 = kp'Rle - kp'R3'M - kter2'R1IR3 - kter3'R3'R

Z=C-FZ-kZR

donde R= ZRJ... Las concentraciones de M, I, C, se considerardn como constante (por ejemplo,
j=2

por hallarse las mencionadas sustancias en gran exceso) y se englobaran en las constantes cinéticas

segln las notaciones:

A=2kl, p=kM, p':k'p.M, o=k, M 9)

Se escogieron R; y R como las dos variables principales del modelo; para reducir las

ecuaciones (8) a solamente dos, se admite que en todo momento b= 0, D= 0, éz =0, Z=0 [12].
Con esto, resulta:

kCR

Ri= A= PR~k R~k RR+2D°R — (2= 5

(10)
R= pRl - ktrZ'RllR - ktr3'R2

En un estado estacionario, para R; = (R1)o, R = Ry, seria R1 =0, R= 0,y se cumpliria

A+@ﬁ—pﬂ&%=%%%h+F+&A&ﬁ+&A&k& )

P(R), = kterz(Rl)o'Ro + kler3'R§

Es conveniente reformular el sistema (10) en términos de nuevas variables {X,Y}, y nuevas
notaciones [8, 13], definidas como sigue:
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)s (12)

obteniéndose el sistema:
yX
X+m (13)

X =a+ fX—0X -0, XY -

Y =h-X - 0, XY - 0, Y
Evidentemente, el estado estacionario ocurre ahora para X = Xg =1, Y =Yy =1; y las

relaciones (11) se reescriben como

4 +06,+0,
1+m (14)

h=6, + 6,

a+ A=

Teniendo esto en cuenta, la matriz jacobiana de (13) vale [14-16]

Y
7 - )
J=|@emy ° :

0, —(6, +26,)

(15)

La condicién para que su determinante sea positivo [15] (lo cual excluye que el estado

estacionario sea un punto de ensilladura) es:

a,-0.
Det >0: 1+m)|a+ 6 + =225 16
> ¥ <( ){a ) 02+29j (16)

Si ademéas su traza es positiva [15], el estado estacionario es foco inestable (si el

determinante A = T? — 4Det < 0), 0 nodo inestable (si A > 0). La condicién de traza positiva es:
T>00 y>1+m)[a+6+6+206] 17)

La compatibilidad de (16) y (17) exige que:
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6,6, > (6, +26,) (18)

Para ello es necesario que 0, > 40,, es decir Ry > 4-(R1)o.
En condiciones ligeramente supercriticas de (17), con la traza solo ligeramente positiva, T
> 0, si se cumple (16) esta asegurado que A = T?— 4Det ~— 4-Det < 0, y el estado estacionario sera

foco inestable.

Figura 1. Plano de fases del sistema (13).

Para el estudio en el plano de fases {X,Y} (véase la Figura 1), se consideraron las nuliclinas

de (13) [17]. La nuliclina caracteristica X =0 es:

Y:i{£+l—6’1X— Y } (19)
6, X X +m

Si A >> 04, el valor X = A/6; sera grande y los correspondientes términos o/X, y/(X + m)
seran pequefios; despreciandolos, se concluye que (19) corta al eje de las X en X = Xg1= A/01.

ParaX —0,Y — oo; para X — o, Y — —o0. Derivando (19), resulta

,dY 1| «a y
v e 4 v 20
Al »

Para un valor de X relativamente pequefio, despreciando el término 0;, es dY/dX =0 para X

= Xmin=m/(JA/a — 1) con A > ). Para otro valor de X relativamente grande, despreciando el
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término a/X?, es dY/dX = 0 para X = Xmax = +/A/6, —m (con y > m?4). En tales condiciones, la

caracteristica (19) posee perfil sigmoidal [1, 13].

La nuliclina Y =0es

6,Y?
X=—30 21
h—6Y (21)

ParaY =0, X = 0; pata Y = h/d,, X — oo, de modo que la recta Y = h/d, = p/0, es una
asintota de (21).

Se puede construir facilmente (Figura 1) un recinto de no-retorno para las trayectorias de
fase [18], delimitado por la linea Q:Q.Q3Q4Q1. La prueba de que las trayectorias no pueden salir de
dicho rectangulo, una vez que han entrado en él, se basa en que el flujo del campo de direcciones de
(13), definido segun

¢=ﬁ@(kij 22)
(donde @ es el producto escalar; n es el vector normal a Q:Q.QsQ.Q: en cada punto de esta
frontera, con sentido hacia afuera del rectangulo) no es nunca positivo para punto alguno de la
frontera.

Se parte de Q, interseccion de (19) con el eje X (aproximadamente, Q; = (A/6,0)), y se
traza el tramo vertical Q;Q; hasta alcanzar la Y = 0. Si A0, es grande, la interseccion Q, estara
proxima a la asintota, Q2 = (A/0,,h/0",). En [Q,Qz[, n = (1,0), X <0(=enQy), ¢= X <0(=en
Qu).

Luego se toma el tramo horizontal Q,Qs, hasta alcanzar de nuevo a X =0. Si p/o, es
grande, despreciando en (19) los términos A, 0, X, y/(X + m)?, Qs (a/p, p/B2). En [Q2Qs[, n = (0,1),
\} <0, (=enQy), ¢:\; <0(=enQy).

Se desciende en vertical Q3Q4 hasta el eje X. Aproximadamente, Qs = (a/p, 0). En
[Q:QuL.F= (-1,0), X 20(=enQs), ¢=—X <0 (=en Qs).

Cierra el recinto el tramo Q,Q; del eje X, en el cual n= (0,-1), Y > 0, ¢= Y <0. Por

tanto, si el estado estacionario es foco inestable, por el teorema de Poincaré—Bendixson, dentro del
rectangulo delimitado por Q:Q,Q3Q4Q;: y entorno al citado estado estacionario foco inestable, existe

al menos un ciclo limite de (13).
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Por consiguiente, las concentraciones Ry R = ZRJ. efectuaran oscilaciones sostenidas. Si
j=2

los pardmetros de la ecuacion (13) para X = 0 son valores grandes

y=L (23)
7,

Siendo p un pardmetro pequefio [19] (eventualmente u — 0), de modo que (13) se pueda
escribir

. R A A A~ A_X
wX =@+ AX =X, — XY - xy+

p- =O'(X,Y>

(24)
Y =hX —6,-XY = 6,Y2 = N(X,Y)

Puede intuirse la forma del ciclo limite extremo para u — 0 (véase la Figura 2). En efecto,

se mantiene la forma sigmoidal de la caracteristica §(X,Y) =0. Para 4 — 0, X = o(X,Y)/ 1.

Figura 2. Ciclo limite de relajacion.
Como la pendiente de la trayectoria de fases es

dY Y aN(X.Y)
dX ¢ o(X)Y)

Para 1 — 0, dY/ dX — 0 (el punto de fase se mueve paralelamente al eje X) excepto, de

nuevo, en un entorno de orden p de a(X,Y) =0.

Asi, el punto de fase se movera lentamente por la curva L;L, de S = 0, hasta que en L,

abandona el entorno de dicha rama lenta, y salta rapidamente por la horizontal L,L3 hasta llegar a la
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otra rama lenta de la caracteristica. Recorre lentamente el tramo LsL4, ¥ en L4 deja de nuevo el
entorno de S = 0 y salta rdpidamente por la horizontal L4L;, cerrdndose el ciclo, el ciclo limite
extremo (para el “caso extremo” pu —> 0). Se tienen entonces las Ilamadas oscilaciones de
relajacion, con cambios muy rapidos de las concentraciones, alternados con periodos de variacion
relativamente lentos [20].

A modo de ejemplo numérico, con los valores (en las adecuadas unidades): a. = 1/u, A = 2/,
m=101=1/p,6,=12/ n,y=22/n,h=2,0,=1,03=1, resultan T = (7/2n) — 3 > 0 para pu < prit
=7/6, Det = 3/2u > 0 para todo yu; en condiciones p=1 < 7/6, T=1/2, Det =3/2, A=—(23/4) < 0,
y el estado estacionario es foco inestable. Entonces (u = 1), la caracteristica posee minimo en X
~0,284, maximo en X ~3,51, corta al eje X en X = 22,1; y el recinto de no—retorno tiene por
vértices Q1(22,1, 0), Q2(22,1, 1,846), Q3(0,05, 1846), Q4(0,05,0), como los adecuados tanteos
permiten calcular.

RESUMEN Y CONCLUSIONES

Se ha estudiado una polimerizacién con iniciador, propagacion por adicion de monémero y
terminacion por recombinacién bimolecular de radicales propagadores [6]. Para estas
recombinaciones se admiten valores distintos de las constantes cinéticas, en funcion de las
longitudes de cadena implicadas: parece razonable que cuanto mas largas sean éstas mas dificil y
lento son los procesos de recombinacion [8], esto es Kier1 > Kierz > Kiers.

En el ejemplo numérico propuesto, con u =1 se tienen (cf. definiciones (12)): 01 = Keer1-(R1)o
=1, 02 = Keerz'Ro = 12, 072 = Keerz (R1)o = 1, 03 = k3-Ro = 1. Por division, se deduce Ry = 12-(R1)o (la
condicion de compatibilidad entre (16) y (17) exige 4:(R1)o < Ro, Keer1 = Keerz (igualdad atribuible a
que en ambas etapas es decisiva la mayor movilidad y simplicidad del primer propagador Ry), Y Kier2
= 12-Kier3, de acuerdo con el razonamiento postulado [1,8].

Las concentraciones de iniciador y de mondémero se suponen constantes en este modelo;
puede cumplirse mientras dichas sustancias se mantengan en gran exceso respecto a las otras
variables.

Se buscaron oscilaciones sostenidas del tipo ciclo limite [14], en base al modelo minimo que
incluye auto—catalisis y término michalisiano [2,10]. Como posibles variables oscilantes se

eligieron las concentraciones del primer propagador (R1), y la total del resto de propagadores

El término michealisiano [9] k-C-R1/(k-R;+F) se obtiene de la forma habitual, introduciendo
una eliminacién de R; por reaccién con una sustancia Z que fluye a través del sistema [1,10].
Para el término de auto—catalisis en R; se usé la idea de una degradacion de una forma
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dimera inestable [4], producida tras reaccion de transferencia al mondémero; pero a fin de no

introducir perturbaciones en la inclusion de R; en la variable oscilante R = ZR]. , NO se utilizd este
i=2

radical R, en el esquema, sino un isomero del mismo, S,, que ademas habia de obtenerse no de R,
sino de R; en una etapa inicial de propagacion paralela. No se ha hecho ningun intento de investigar
dicha propagacion y como se reflejaran en ella las oscilaciones de la propagacion principal, en R; y
en R.

Las ecuaciones cinéticas del mecanismo se redujeron a dos variables con la suposicion
habitual de que las restantes logran un rapido estado quasi—estacionario [12]. Se reescribe el sistema
en variables adimensionales [8] X ~ R1, Y ~ R, y se derivan condiciones para que se tenga un
estado estacionario foco inestable.

La sigmoidalidad de la nuliclina caracteristica [17] facilita construir en el plano de fases un
recinto de no-retorno para las trayectorias [19], y entonces por el teorema de Poincaré—Bendixson
[18] se demuestra la existencia de ciclo limite. Asimismo, es facil la eleccion de un pardmetro
pequefio que posibilita la ocurrencia de oscilaciones de relajacion, con saltos rapidos en la

concentracion del primer propagador [19, 20].
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