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ABSTRACT 

Cuando en una polimerización alguna(s) cadenas(s) de polímero actúa(n) como catalizador sobre 

un adecuado sustrato (con adaptación de sus respectivas conformaciones estereoquímicas), para regenerar 

otra especie que tome parte en la propagación de la misma polimerización, surge un fenómeno de 

autocatálisis. Además de este efecto, debe postularse una degradación enzimática, o una eliminación por 

un tercer cuerpo que fluye a través del sistema, para poder obtenerse comportamiento de ciclo límite. 

En este trabajo se plantea primero un mecanismo básico, incorporando la posibilidad de que todos 

los propagadores experimenten transición conformacional o terminación de primer orden. Se obtienen y 

analizan varios casos particulares de dicho mecanismo básico. Si se da carácter de catalizador a todas las 

formas polímeras, y el sustrato es una conformación isómera del monómero, es posible considerar otro 

modelo que incluya terminaciones de segundo orden (reacción bimolecular entre propagadores). Tras 

deducir condiciones para estado estacionario foco/nodo inestable, se completa la prueba de existencia de 

ciclo límite usando el teorema de Poincaré–Bendixson. Las variables sustrato y catalizador exhibirán, 

pues, oscilaciones sostenidas. 

Palabras claves: autocatálisis, reacción bimolecular entre propagadores, ciclo límite, teorema de 

Poincaré–Bendixson, oscilaciones sostenidas. 

 

1. INTRODUCCIÓN 
 

La autocatálisis es un tipo de retracción (feedback) habitual en los modelos de osciladores 

químicos [2–10]. En un proceso de polimerización puede darse cuando alguna(s) cadenas de 

polímero catalizan la descomposición/despolimerización de otra cadena de menor longitud (en 

virtud de la mutua adaptación de sus conformaciones estereoquímica, al modo por ejemplo de la 

interacción enzima–sustrato) [11–15], regenerando propagadores de la misma polimerización. 

Esta idea ha sido explorada en estudios anteriores [16,17] tanto para el caso sencillo de 

fragmentación en dos nuevos propagadores [18], como para el caso de obtenerse q fragmentos 

iguales. En el primer estudio [16] el planteamiento se extendió al caso de que todos los 

propagadores diesen transiciones conformacionales (aunque solamente activas las del sustrato y 

catalizador) o/y terminaciones; el segundo estudio [17] trataba el caso más simple de solamente las 

dos citadas transiciones activas. En este trabajo se extiende el planteamiento del segundo estudio 

sobre ruptura múltiple al caso de transiciones/terminaciones múltiples. 

 La Sección 2 examina un modelo básico, del que en la Sección 3 se deducen casos 

particulares interesantes. En la Sección 4 se plantean terminaciones de segundo orden [19–21], a 

costa de asignar un carácter más colectivo a las conformaciones catalizadoras. Una vez deducidas 

condiciones de nodo o foco inestable para el estado estacionario [22–30], la sección 5 completa la 

prueba de existencia de ciclo límite mediante el teorema de Poincaré–Bendixson [31–35]. 
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2. Un mecanismo básico (Mecanismo A7). Se continúa utilizando la nomenclatura de los 

precedentes estudios [16, 17]. 

 La concentración de monómero se considera constante, englobada en las constantes cinéticas 

de las etapas (iniciación, propagación por incorporación paso a paso) en las que participe. 

En principio se tienen 
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Concretamente, para j = c y j = n, las formas pc y pn son respectivamente constante y 

catalizador en la etapa 

     ·n c b np p q R p       (2) 

que fragmenta pc de nuevo en q propagadores b–meros iguales; será c = q·b, c   q   1. Así se logra 

la autocatálisis. Este efecto se ha de completar [36] con un monómero michaelisiano (denominador 

binómico "concentración + constante") en la ecuación cinética para pn, el cual puede proceder, bien 

de una degradación enzimática de pn [37, 38] 
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bien de una eliminación de pn por reacción con el tercer cuerpo Z que fluye a través del sistema [39] 
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en ambos casos suponiendo 0.Z


  

 Para el mecanismo (1) + (2) + (3b), esquemáticamente 
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las ecuaciones cinéticas son: 

•
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 Se reducen a las dos variables principales {pn,pc}. Suponiendo 

0, 0 ( 1,2,.... ),jZ R j
 

     y resultan 
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  (5) 

donde k = p + , m = k3/k2; se supone que se verifica 
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 En el estado estacionario 0 0( ) , ( ) , 0, 0.n n c c n cp p p p son p p
 

     Haciendo (pn)0 = 1, y 

entonces (pc)c = U0, se tendrán 
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de donde 
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 Para normalizar el sistema (5) se pasa a las nuevas variables [40–42] 
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reescribiéndolas como 
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 Al mencionado estado estacionario corresponde ahora X = X0 =1, Y = Y0 = 1. La matriz 

jacobiana de (9) es [24] 
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 Su determinante y su traza son respectivamente [43] 
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 Nótese que Det > 0 siempre. Para que sea T > 0 se precisan 
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 En las condiciones (6), (12) y (13), el estado estacionario es inestable, del tipo nodo (Det > 

0, T > 0, D = T
2
  – Det > 0). En la sección 5 se probará que en torno a este nodo o foco inestable 
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existe un ciclo límite, y por tanto las concentraciones de sustrato y de catalizador 

 ,c np Y p X  efectúan oscilaciones sostenidas. 

 El análisis se ha realizado en base a , U0, y la constante michaelisiana m = k3/k2. Juegan un 

papel importante los valores del grado de polimerización (n, c, b, q = c/b). Dado que  < k, p < k, es 

de suponer que Uo >>> 1, lo que es coherente con lo que la concentración de sustrato suele ser 

mayor que la del catalizador. 

 Seguidamente se estudian algunos casos particulares de este modelo. 

 3. Variantes del mecanismo A7. Se estudian los casos extremos q = c, y q = 1. 

 Mecanismo A8. Para que q = c, b =1, la etapa (2) sería una "reiniciación" [45], que regenera 

los propagadores R1. Las expresiones (6), (12) y (13) se transforman respectivamente en 
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 Mecanismo A9. Para q = 1, c = b, la reacción (2) se trataría de una reversión de la activación 

conformacional, más que de una fragmentación. Las expresiones (6), (12) y (13) pasan a ser 
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 Mecanismo A10. Para q = c = 1, b = 1, se combinan en la etapa (2) la reiniciación y la 
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reversión de la activación de p1. Las expresiones análogas (6), (12), y (13) serían 
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 La siguiente sección aborda un modelo ligeramente distinto a los hasta ahora estudiados A1–

A10. 

 4. MECANISMO A11. En efecto, en los mecanismos A1–A10 los pasos Rj  pj, o bien no 

se proponen como terminaciones propiamente dichas (a modo de cadenas enzimáticas que aún 

conservan extremos NH2– y –COOH potencialmente activos para la policondensación) [46], o se 

consideran terminaciones de orden uno, por ejemplo transferencia a disolvente [47]. Si se desean 

tener en cuenta terminaciones de orden dos: Ri + Rj   pi+j (proceso muy típico en la 

poliadición radical) [20], pueden surgir complicaciones al evaluar (cuando se supone 0jR
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reducir el número de variables de las ecuaciones cinéticas) la sucesión de valores jR que conduce a 
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 
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catalítica (2) implicando unas formas pc y pn concretas, pues en tal caso se tendrían 
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 interrumpe la regularidad de la secuencia al calcular 
1

R
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 Como salida al problema se pensó en modificar el esquema mecanístico, por una parte 

sacando el sustrato pc de la cadena de formas polímeras pj ( 1,2,.... )j   , y por otra parte 
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atribuyendo el valor de catalizador pn al total de formas 
2

g
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  (con g = i + j). La polimerización 

básica se escribe, pues, 
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para luego añadir la reiniciación 
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 Las ecuaciones cinéticas para (23) + (24) + (25) son: 
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Z B k Z p k

  

 



 













 





 





   

  

    

 
   
 

         

  

  





· · ·c nc

Z

p R p p 























  

  (26) 

donde se designan 
1 2

, .j n g
j g

R R p p
 

 

   Se reducen a las dos variables principales {pn,pc} 

suponiendo 0, 0 ( 1,2,.3,... ) (por tanto 0), 0,c j cR R j R Z
   

      y resultan 



Revista Iberoamericana de Polímeros y Materiales Polímeros   Volumen 18(3) Mayo de 2017 

Katime y Pérez–Ortiz                                                     Oscilaciones sostenidas 

 

     168      Rev. Iberoam. Polímeros y materiales Polímeros 18(3), 161-172 (2017) 

    
 

 

·

3 2

·
( · )

/

· · · ·

n
n n c

n

c n c n c

B pa
p A p p

k p k k

p A p p p p
k




 






   


   


   (27) 

donde k = a + . Se supone que se verifica (al ser k = a +    >1) 

      1
k


       (28) 

 En el estado estacionario pn = (pn)0, pc = (pc)0, son 0, 0n cp p
 

  . Haciendo (pn)0 = 1, y 

entonces (pc)0 = U0, se tendrán (con m = k3/k2) 

     

 

0

0 0

( · )
1

· ·

a B
A U

k m

A U U
k




 


  


  


    (29) 

esto es 

     

 

0

0

· ( 1)

1 · ·

k
A U

a
B m U








 


  


 

 El sistema (27) se re-escaliza pasando a las nuevas variables (8), reescribiéndolo como [40] 

   

 0·

0

· · · · ( , )

· · · · ( , )

a BX
X A U X Y q X Y X Y

k X m

A
Y X Y X Y N X Y

k U

 


 






     
 

  

     
  

   (30) 

 Al mencionado estado estacionario corresponde ahora X = X0 = 1, Y = Y0 = 1. La matriz 

jacobiana de (30) es 

  

0 0

0 0

0 0

· · · ·

1

1 1

S S U a a Um

X Y k m k
J

N N

X Y k k

 



 
 

         
                                                      

  (31) 

 Su determinante y su traza son respectivamente [24,43] 
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2
0·

0 0 0 0

0

0 0

·
· · 1 ·

1

· ·
· 1

1

U aS N S N m
Det

X Y Y X k m

U aS N m
T

X Y k m k

 



  




              
              

               


                            

  (32) 

 Nótese que Det > 0 siempre. Para que sea T > 0 se precisan 

      
 /

1

k
m

k








      (33) 

y 

     0

1

1

k
U

a m

k m







 
 

 
 

 
 

     (34) 

 Con las condiciones (28), (33) y (34), el estado estacionario es inestable, de tipo nodo (es 

decir, Det  >  0, T > 0,  = T
2
 – 4·Det > 0) o foco (Det > 0, T > 0,  = T

2
 – 4·Det < 0).  En la sección 5 

se completa la prueba de existencia de ciclo límite, y por tanto de que las variables 
2

n g
g

p p X




  

(formas catalizadoras, en este modelo posee un carácter más colectivo que en otros mecanismos 

estudiados) y pc Y (una forma procedente del isómero pc del monómero; éste isómero Rc es 

distinto del monómero (constante) que se incorpora paso a paso en la propagación), efectúan 

oscilaciones sostenidas [48]. 

 Como puede observarse, en este modelo no influye la constante de propagación p (al haber 

realizado hasta infinito la sumatoria 
1

j
j

R R




 ) [19]. 

 5. Recinto de Poincaré–Bendixson [16, 17]. Las ecuaciones cinéticas de los modelos 

estudiados, una vez normalizados mediante las nuevas variables (8) son de la forma general 

     

 

·
· ·

· 1 ·

X
X X Y

X m

Y X Y


 








   




 

     (35) 

 La nuliclina 0Y


  es hipérbola 

      
1

Y
X

       (36) 
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 La nuliclina 0X


  es 

     
1

Y
X m X

 



 
  

 
     (37) 

para X = 0, Y  –  ; para X   , Y  0. Para X = ·m/( – )  (si  > ), Y = 0. Para 

 / 1

m
X

 



, hay un máximo. La Figura 1 muestra la topología de ambas nuliclinas [27]. 

   

 

 

 

 

 

 

 

 

 

 

 Figura 1. Recinto de Poincaré-Bendixson. 

 

 La constante de la frontera  = H1H2H3H4H5 del recinto de Poincaré–Bendixson se inicia en 

la intersección H1(·m/(), 0) de (25) con el eje X. Se prosigue en vertical hasta alcanzar la 

nuliclina (30) en el punto  2 ( ) /( ),0H m     de (25) con el eje X. Se prosigue en horizontal 

hasta llegar a la recta X = 1, en el punto H3 (1, (/(a + m)). Para el tramo H3H4 se emplea la 

recta 

     
σ·X

Y = + constante


      (38) 

eligiendo el valor de la constante para que (38) pase por H3. Las coordenadas de la intersección H4 

de (38) con (37) han de determinarse por tanteo. Se prosigue por la vertical H4H5 hasta el eje X, y el 
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tramo H5H1 de dicho eje cierra el recinto. 

 Sea  n  es un vector perpendicular a la frontera , en cada punto de la frontera, y en sentido 

saliente del recinto. El flujo del vector campo de (35) (esto es, del vector ( , )X Y
 

) a través de  vale 

      
• •

X,Yn
 

   
 

     (39) 

donde  es el producto escalar. Los resultados son 

        

 

• •

1 2 1

• •

2 3 2

3 4 3

3 4 (36) (37)

4 5

[H H [:  ( 1,0), X 0, X 0 ( )

[H H [:  (0,1), Y 0, Y 0 (= en H )

[H H [:  = 1, γ/σ , γ·X 1/γ · β/X  /X ) 1/ (1/X) 0 (= en H ), ya que en 

[H H [es : (1/ ) (1/ ) ( /( ) / )  

[H H

n en H

n

n X

Y Y X Y X m X



 

       

    

      

   

• •

4

• •

5 1

[: n = (1,0),X 0, Φ = X 0 (= en H )

[H H [:  n = (0, 1),Y 0, Φ = Y 0

 

   

 (40) 

 Por tanto, las trayectorias de fase no pueden salir del citado recinto, y si el único estado 

estacionario dentro del recinto es nodo/foco inestable, según el teorema de Poincaré–Bendixson 

existe al menos un ciclo límite de (35). 
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