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ABSTRACT

Cuando en una polimerizacion alguna(s) cadenas(s) de polimero actda(n) como catalizador sobre
un adecuado sustrato (con adaptacion de sus respectivas conformaciones estereoquimicas), para regenerar
otra especie que tome parte en la propagacion de la misma polimerizacion, surge un fenémeno de
autocatalisis. Ademas de este efecto, debe postularse una degradacion enzimética, o una eliminacién por
un tercer cuerpo que fluye a través del sistema, para poder obtenerse comportamiento de ciclo limite.

En este trabajo se plantea primero un mecanismo bésico, incorporando la posibilidad de que todos
los propagadores experimenten transicién conformacional o terminacion de primer orden. Se obtienen y
analizan varios casos particulares de dicho mecanismo basico. Si se da caracter de catalizador a todas las
formas polimeras, y el sustrato es una conformacion isémera del monémero, es posible considerar otro
modelo que incluya terminaciones de segundo orden (reaccidon bimolecular entre propagadores). Tras
deducir condiciones para estado estacionario foco/nodo inestable, se completa la prueba de existencia de
ciclo limite usando el teorema de Poincaré—Bendixson. Las variables sustrato y catalizador exhibiran,
pues, oscilaciones sostenidas.

Palabras claves: autocatalisis, reaccion bimolecular entre propagadores, ciclo limite, teorema de
Poincaré—Bendixson, oscilaciones sostenidas.

1. INTRODUCCION

La autocatalisis es un tipo de retraccion (feedback) habitual en los modelos de osciladores
quimicos [2-10]. En un proceso de polimerizacion puede darse cuando alguna(s) cadenas de
polimero catalizan la descomposicion/despolimerizacién de otra cadena de menor longitud (en
virtud de la mutua adaptaciéon de sus conformaciones estereoquimica, al modo por ejemplo de la

interaccion enzima-sustrato) [11-15], regenerando propagadores de la misma polimerizacion.

Esta idea ha sido explorada en estudios anteriores [16,17] tanto para el caso sencillo de
fragmentacion en dos nuevos propagadores [18], como para el caso de obtenerse q fragmentos
iguales. En el primer estudio [16] el planteamiento se extendié al caso de que todos los
propagadores diesen transiciones conformacionales (aunque solamente activas las del sustrato y
catalizador) o/y terminaciones; el segundo estudio [17] trataba el caso mas simple de solamente las
dos citadas transiciones activas. En este trabajo se extiende el planteamiento del segundo estudio

sobre ruptura multiple al caso de transiciones/terminaciones multiples.

La Seccion 2 examina un modelo basico, del que en la Seccién 3 se deducen casos
particulares interesantes. En la Seccion 4 se plantean terminaciones de segundo orden [19-21], a
costa de asignar un caracter mas colectivo a las conformaciones catalizadoras. Una vez deducidas
condiciones de nodo o foco inestable para el estado estacionario [22—30], la seccion 5 completa la

prueba de existencia de ciclo limite mediante el teorema de Poincaré—Bendixson [31-35].
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2. Un mecanismo bésico (Mecanismo A7). Se continda utilizando la nomenclatura de los
precedentes estudios [16, 17].

La concentracion de monomero se considera constante, englobada en las constantes cinéticas

de las etapas (iniciacion, propagacion por incorporacion paso a paso) en las que participe.

En principio se tienen

A > R
R, —— R, (j=12,...0) (1)
R —— p; (j=12,...0)

Concretamente, para j = ¢ y j = n, las formas p. y pn son respectivamente constante y

catalizador en la etapa
pn + pc L)qRo + pn (2)

que fragmenta p. de nuevo en q propagadores b—meros iguales; serd c =q-b, ¢ > q > 1. Asi se logra
la autocatalisis. Este efecto se ha de completar [36] con un mondémero michaelisiano (denominador
binémico "concentracién + constante") en la ecuacion cinética para py, el cual puede proceder, bien

de una degradacion enzimatica de p, [37, 38]

{pn+Z —— W 32)

W —=% > Z + producto(s)
bien de una eliminacion de p, por reaccion con el tercer cuerpo Z que fluye a través del sistema [39]

{B >z b (3h)

up

Z+p, —i

en ambos casos suponiendo Z =0.

Para el mecanismo (1) + (2) + (3b), esquematicamente

A>R-—25R 25 . >R 25 .  >R—E5. >Rt

AN

A
Pc P]]_

L

ls
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las ecuaciones cinéticas son:

Ri=A-pR, - @R

Iij = pR;, - PR;— @R, (j=12,..b-Lb+Lb+2.c-Lc+lc+2..;n-1,n+2..0

Ro = p'Rb—i - pr_ a)'Rb + qﬁ“pnpc

l?c = p'Rc—l - pRc - a)'Rc (4)
Rn = p'Rn—l - pRn _a)'Rn

P. = a)Rc - ﬂ"pn'pc

F;n = w'Rn - kZ'Z'pn

Z=B-kZp, —kZ
Se reducen a las dos variables  principales  {pnpc}.  Suponiendo

i =0, I.?,- =0()j=L12,...0), yresultan

o @ p n-b p b-1 Bp
== = L Y —_——tn
Py k(kj [(kj +qlmpJ} o+ m

c-b b-1 (5)
L _ofPp p
=2 Pl A+alp.- — ln.-
pC k (kj |:(kj + q pn pC :| pn pC
donde k = p + o, m = ka/ky; se supone que se verifica
@ p c-b
—l =1 g<1 6
o2 ®

En el estado estacionario p, = (P,): P. = (P.)o, SON p;n =0, [SC =0. Haciendo (pn)o =1,y

22"
=GN

entonces (pc)c = Uo, se tendran

~|o

i ] 1+m
B b-1 7] ()
(Ej-A+q%UO=ZUO

~|o

de donde
Bz(B]niMJ(l+n0
k 0
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Para normalizar el sistema (5) se pasa a las nuevas variables [40—42]
P P : P P
X=-"tn —Fn_19 y=_F _ F (8)
(pn)o 1 (pc)O Uo

reescribiéndolas como

X = %(E)b[(E)MA 4 q-/wo-x-v}— % =5(X,Y)

. ® p c-b p b-1 A
v :I(Fj KEJ =+ q-ﬂ-X-Y:I — XY =N(X,Y)

0

(9)

Al mencionado estado estacionario corresponde ahora X = X, =1, Y = Y, = 1. La matriz
jacobiana de (9) es [24]

wl[if () ] (3) 3)

k
= (10)
sy 18 @
4 1“"‘@ L - ‘E(ﬂ af] W) \av)
Su determinante y su traza son respectivamente [43]
c-b n-c
Det:(ﬁ) (@j _(ﬁj (@) = 22U, 1_5’.(Ej (Bj j_m
oX Jo\ oY J, oY J,\oX ), k \k k 1+m 1
11
n-b n-c c-b
To(3) (@) o) (2] | 2]
oX J, oY J, | k\Kk k 1+m k \ Kk
Notese que Det > 0 siempre. Para que sea T > 0 se precisan
m @ p c-b
Tem * ?(Ej K 12
y
1P}
(kj |
U, > (13)

b
5 .
n-b n—c
of Py, (PY [ m
SRR
En las condiciones (6), (12) y (13), el estado estacionario es inestable, del tipo nodo (Det >

0, T>0,D =T — Det > 0). En la seccién 5 se probara que en torno a este nodo o foco inestable
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existe un ciclo limite, y por tanto las concentraciones de sustrato y de catalizador

(pC ~Y, p, ~ X) efectGan oscilaciones sostenidas.

El analisis se ha realizado en base a A, Uy, y la constante michaelisiana m = ka/k,. Juegan un
papel importante los valores del grado de polimerizacion (n, ¢, b, g = c¢/b). Dado que » <Kk, p <k, es
de suponer que U, >>> 1, lo que es coherente con lo que la concentracion de sustrato suele ser

mayor que la del catalizador.
Seguidamente se estudian algunos casos particulares de este modelo.
3. Variantes del mecanismo A7. Se estudian los casos extremosq =c,yq = 1.

Mecanismo A8. Para que q = ¢, b =1, la etapa (2) seria una "reiniciacion"” [45], que regenera

los propagadores R;. Las expresiones (6), (12) y (13) se transforman respectivamente en

c-1
@rpy
" (kj c<l1 (14)
m w(p ot
Trm © ?(Ej ¢ (15)

(16)

> n-1 n—c
w(pj .C_(pj .m
k \k k 1+m

Mecanismo A9. Para q =1, ¢ = b, la reaccion (2) se trataria de una reversion de la activacion

conformacional, mas que de una fragmentacion. Las expresiones (6), (12) y (13) pasan a ser

% <1 (trivial, yaquek=p + o) a7
@
m < K (18)
1_@
k
U, > (19)

w(pjn—b _(p)n—c. m
k \ k k 1+ m

Mecanismo A10. Para g =c = 1, b = 1, se combinan en la etapa (2) la reiniciacion y la
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reversion de la activacion de p;. Las expresiones analogas (6), (12), y (13) serian

0]
Z<« 20
S (20)
@
m < K (21)
1.9
K
1-2
k
U, > (22)

n-1
Py o _ M
(kj [ k 1+m j
La siguiente seccion aborda un modelo ligeramente distinto a los hasta ahora estudiados A1—

Al0.

4. MECANISMO A11. En efecto, en los mecanismos A1-A10 los pasos R; — pj, 0 bien no
se proponen como terminaciones propiamente dichas (a modo de cadenas enzimaticas que aun
conservan extremos NH,— y —COOH potencialmente activos para la policondensacion) [46], o se

consideran terminaciones de orden uno, por ejemplo transferencia a disolvente [47]. Si se desean

tener en cuenta terminaciones de orden dos: R + R; —*— pisj (proceso muy tipico en la

poliadicion radical) [20], pueden surgir complicaciones al evaluar (cuando se supone F.{,- =0 al

reducir el nimero de variables de las ecuaciones cinéticas) la sucesion de valores R; que conduce a

Rc y Rn, cantidades que han de intervenir en p_y p,. No las habria de no existir una etapa

catalitica (2) implicando unas formas p. y pn concretas, pues en tal caso se tendrian
Ri=A-pR -@RDYRRj=A-pR,, - pR,—- @R D R j(L2..%)

y con ZR, =0=A- a)(Zk)z resultan ecuaciones de primer grado para todas las R;; pero con

dicha etapa, esencial para los modelos de oscilaciones aqui investigados, la presencia de términos

en A-Pe-pn para F.Qc y F.Qn interrumpe la regularidad de la secuencia al calcular ZZR
1

Como salida al problema se pensd en modificar el esquema mecanistico, por una parte

sacando el sustrato p. de la cadena de formas polimeras p; (j=12,...00), y por otra parte
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atribuyendo el valor de catalizador p, al total de formas Z p, (con g =i +j). La polimerizacion
g=2

bésica se escribe, pues,

A - R

R, —> p,

R —— R (23)
R. —25 R, (j=12..%)

]

R+R —= p,=p,; (=12.0:j=L2..00;¢g=23,..0)
para luego afiadir la reiniciacion
p,+pP. ——> R +p, (9=23.%) (24)

y un bloque del tipo (3a) o (3b) referido a las formas pq. Por ejemplo

B —» Z %>
) (25)
Z +p, — (g=23,..x)
Las ecuaciones cinéticas para (23) + (24) + (25) son:
Re = A— &R, + A-p,p, — @R,
Ri = aR, — pR - oRR
Rj = pR, - PR, - R R (j=2.3,..)
I.? :(il.?j ] =aR, — oR,
= (26)
P, = @R R, —Kk,-Z-p, (1=L2.0:)=12,.:0=i+ ] =2.3,..0)
P, = D P, = R~ K,Z-p,
g=2
Z=B-kZp, —kZ
pC = 5RC - //bpn.poo

donde se designan R:ZR,-, P, ZZpg. Se reducen a las dos variables principales {pn,pc}
j=1 g=2

suponiendo I.?c =0, ﬁ%,— =0 (j =12,.3,...0) (por tanto ﬁ%c =0), Z =0, y resultan
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* a B-p
P = (A+Ap,0) —— 55
; pn + (k3/k2) (27)
P. = E(A + ﬂ’pnpc) - l'pn'pc

donde k = a + &. Se supone que se verifica (al serk =a+ & >1)

o
—<1 28
" (28)
En el estado estacionario pn = (Pn)o, Pc = (Pc)o, SON r;n =0, ﬁc =0. Haciendo (pn)o =1,y

entonces (pPc)o = Uo, se tendran (con m = ka/ky)

B
1+m

Z(A+2U;) =

29
5 (29)
E(A + lUO) = /IUO

esto es

K
A=AU,(= -1
o5 =1

B =%(1+ m)- AU,

El sistema (27) se re-escaliza pasando a las nuevas variables (8), reescribiéndolo como [40]

VIE: BX
X=2[A XY +gXY]- = S5(X,Y
k[ + AU XY + g-XY] o S5(X,Y)
(30)
Y =O[ A L AXY | = AXY = N(X,Y)

Al mencionado estado estacionario corresponde ahora X = Xpo =1, Y = Yo = 1. La matriz

jacobiana de (30) es
(@j (@j AUgal s m a-AU,
AKX Nl | 6 |k 1+m k
[ eN oNY [ S5 5
(axjo (avjo -] )

Su determinante y su traza son respectivamente [24,43]

(31)
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o= (ST (S UE)L -
PUACTERCIACT k)\1+m

(32)
() (s 4
oX )y \0Y ), o \k 1+m K
Notese que Det > 0 siempre. Para que sea T > 0 se precisan

k
m < M (33)

1.9

k

y

i

U, > (34)

afo__m
o\k 1+m
Con las condiciones (28), (33) y (34), el estado estacionario es inestable, de tipo nodo (es

decir, Det > 0, T>0, A=T?— 4.Det > 0) o foco (Det>0,T>0,A = T2 _ 4.Det < 0). Enlaseccién5

se completa la prueba de existencia de ciclo limite, y por tanto de que las variables p, = ng ~ X
g=2
(formas catalizadoras, en este modelo posee un caracter mas colectivo que en otros mecanismos
estudiados) y pc ~Y (una forma procedente del isomero p. del mondémero; éste isomero R es
distinto del mondmero (constante) que se incorpora paso a paso en la propagacion), efectlan

oscilaciones sostenidas [48].

Como puede observarse, en este modelo no influye la constante de propagacion p (al haber

realizado hasta infinito la sumatoria R = ZRJ- ) [19].
j=1

5. Recinto de Poincare-Bendixson [16, 17]. Las ecuaciones cinéeticas de los modelos

estudiados, una vez normalizados mediante las nuevas variables (8) son de la forma general

X —a+yxy - L%

X +m (35)
Y = 0'-(1— X-Y)
La nuliclina Y =0 es hipérbola
1
Y= — 36
X (36)
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La nuliclina X =0 es

Y=i( L —EJ (37)
y \X+m X

para X =0, Y > —oo; para X — o, Y > 0. Para X =a-m/(p—a) (sip>a), Y =0. Para

m

X = , hay un méaximo. La Figura 1 muestra la topologia de ambas nuliclinas [27].

Estado
Estacionario

1

Figura 1. Recinto de Poincaré-Bendixson.

La constante de la frontera I' = H{H,HsH4Hs5 del recinto de Poincaré—Bendixson se inicia en

la interseccion Hi(a-m/(B — o), 0) de (25) con el eje X. Se prosigue en vertical hasta alcanzar la

nuliclina (30) en el punto Hz((a—m)/(ﬁ—a),o) de (25) con el eje X. Se prosigue en horizontal

hasta llegar a la recta X = 1, en el punto Hs (1, (B—a)/(a + m)). Para el tramo HsH, se emplea la

recta

Y = _oX + constante (38)
4

eligiendo el valor de la constante para que (38) pase por Hs. Las coordenadas de la interseccion Hy

de (38) con (37) han de determinarse por tanteo. Se prosigue por la vertical H4Hs hasta el eje X, y el
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tramo HsH; de dicho eje cierra el recinto.

Sea n es un vector perpendicular a la frontera I, en cada punto de la frontera, y en sentido

saliente del recinto. El flujo del vector campo de (35) (esto es, del vector ().( ,\.()) através de I' vale
@:a@(x,vj (39)
donde O es el producto escalar. Los resultados son

[HH,[: fi=(-10), X>0,d=-X<0(=en H,)
[H,H[: i=(01), Y<0,®=Y<0(=enH,)

(HHL: 1=(Lyio). 0=y X[(1{[BX - a/X])-1/X)J[-1X] <0 (=enHy). yagqueen  (4)
[HaH,[es Yo, < Yoy - U/ X) = W) [(BI(X +m) =/ X)]

[HH.[: i = (1,0),X <0, ®=X <0 (=enH,)
[HH[ =(0-1)Y>0d=-Y<0

Por tanto, las trayectorias de fase no pueden salir del citado recinto, y si el Unico estado
estacionario dentro del recinto es nodo/foco inestable, segin el teorema de Poincaré—Bendixson

existe al menos un ciclo limite de (35).
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