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RESUMEN 

 Se han planteado algunos modelos cinéticos basados en un ciclo de transiciones entre tres 

conformaciones estereoquímicas poliméricas, según el en esquema: 

 
En principio, el simple ciclo citado, sin atribuir propiedad catalítica interna a alguna a las tres 

especies, puede tener, para valores aproximadamente iguales de las constantes cinéticas, un estado 

estacionario foco estable, al que el sistema tienda mediante oscilaciones amortiguadas. Estas pueden 

aparecer en la cinética de una sustancia externa al ciclo, sobre la que una de las formas ejerza catálisis. 

Cuando las tres transformaciones poseen autocatálisis simple ( por ejemplo, 2A B B  ), 

existen varios estados estacionarios: algunos inestables (puntos de ensilladura), y otro, centro, con 

oscilaciones sostenidas, que también se reflejarán en la acción catalítica de una conformación sobre un 

sustrato externo. 

Por último se analiza el caso de que las tres interconversiones posean autocatálisis cúbicas (por 

ejemplo, 2 3A B B  ), caso en que existe (si las constantes son aproximadamente iguales) un 

estado estacionario foco inestable, con oscilaciones sostenidas de ciclo límite. 

En todos los análisis, juega un importante papel la conservación de masa: A + B + C = m = constante. 

 Palabras claves: transiciones conformacionales, estado estacionario foco inestable, ciclo 

límite, oscilaciones amortiguadas, autocatálisis, acción autocatalítica. 

 

 

ABSTRACT 
Some kinetic models have been proposed based on a cycle of transitions between three polymeric 

stereochemical conformations, according to the scheme 

  

 
  In principle, the simple cycle cited, without attributing internal catalytic property to any of the 

three species, can have, for values approximately equal of the kinetic constants,  a steady-state of stable 

focus at which the system tends to damped oscillations. These can appear in the kinetics of a substance 

external to the cycle, on which an of them forms exercise catalysis. 

 When the three transformations have simple autocatalysis ( 2A B B  , for example), 

there are several stationary states: some unstable (saddle points), and another, Center, with damped 

oscillations, which are also reflected in the catalytic action of a conformation on an external substrate. 

 Finally, we analyze the case that the three interconversions have cubic autocatalysis (for 

example, 2A B B  ), in which case, if the constants are approximately equal, exists a steady state 

unstable focus, with sustained oscillations of the limit cycle. 

In all the analyses, plays an important role the conservation of mass: A + B + C = m = constant. 

Key words: conformational transitions, State stationary unstable focus, cycle limit, damped 

oscillations, autocatalysis, autocatalytic action 
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INTRODUCCIÓN 

Es conocido el hecho de que las conformaciones estereoquímicas de algunos polímeros les 

confieren interesantes propiedades [1–4]. Podría citarse el clásico ejemplo de las enzimas, con la no 

menos clásica metáfora de la llave y la cerradura [5]. Recientemente, Yoshida y col. han estudiado 

[6–10] geles sensibles a estímulos como cambios de pH, temperatura, disolvente, etc..., y han 

obtenido sorprendentes resultados de ordenamiento temporal (oscilaciones) y espacial (ondas 

químicas) al incluir en el polímero, responsable del gel, iones metálicos implicados en la célebre 

reacción de Belousov–Zhabotinsky [11,12]. 

En este trabajo se presentan algunos modelos sencillos referentes a la propia transición 

conformacional, mostrando como la periodicidad temporal puede surgir como inherente a la misma. 

En principio el planteamiento implica tres conformaciones, pero una condición de conservación de 

materia [13] reduce el tratamiento a dos variables, permitiendo así aplicar técnicas de plano de fases 

[14,16], concretamente el análisis del carácter de los estados estacionarios [17–20]. 

OSCILACIÓN AMORTIGUADA 

Se consideran tres conformaciones, A, B y C, de un mismo polímero, que se transforman 

según: 

      

1

2

3

k

k

k

A B

B C

C A

 







     (1) 

 Las ecuaciones cinéticas se escriben 

      

1 3

1 2

2 3

· ·

· ·

· ·

A k A k C

B k A k B

C k B k C








  


 


  


     (2) 

En un estado estacionario, A = A0, B = B0, C = C0, serán 0, 0, 0,A B C
  

    es decir, 

      1 0 2 0 3 0k ·A = k ·B = k ·C     (3) 

 Dado que A  + B  + C  = 0, 
  

se cumple la conservación total de materia: 

    A + B + C = m = constante      (4) 



Revista Iberoamericana de Polímeros                             Volumen 19(1), Marzo de 2018 

Katime y Pérez–Ortiz        Oscilaciones en transiciones conformacionales 

      3 Rev. Iberoam. Polímeros y Materiales, 18(1), 1-9 (2018) 

lo que permite reescribir (2) como 

      1 3 3 3

2 2

A = k + k · · ·

B · ·

A k B k m

k A k B






   



 

    (5) 

A un resultado análogo se llega planteando una catálisis enzimática [22] sobre el sustrato S, 

en la conversión  :S p  

     

´
1

3

k

k

S A B

B C

C A p


 





 




      (6) 

donde A, B, y C se interpretan como enzima libre (A) y dos conformaciones (B, C) del complejo 

enzima–sustrato. Si el sustrato está en exceso, de modo que se pueda aproximar  ´

1 1· ,k S k el 

esquema (6) es isomorfo al (1). 

 Si para el citado estado estacionario son 0 0, 0,oA B  se pueden definir las variables y 

notaciones siguientes: 

   3 3 0
1 3

0 0 0

· ·
, ; , ,

o

k m k BA B
X Y k k

A B A A
           (7) 

y reescribir (5) en la forma 

     

 2

X = · ·

Y ·

X Y

k X Y

  





  



 

      (8) 

 Evidentemente, al estado estacionario de referencia 0 0, ,A A B B  corresponden ahora X = 

X0 = 1, Y = Y0 = 1, cumpliéndose 

      =         (9) 

 La matriz jacobiana para (8) es 

      
2 2

J
k k

   
  

 
     (10) 
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 El determinante vale  2 2· 0Det k k       siempre. La traza es T = – (k2 + ) = – 

(k1 + k2 + k3) < 0 siempre, y es posible encontrar condiciones en que el discriminante  = T
2
 – 

4·Det sea negativo, en cuyo caso el citado estado estacionario es foco estable [17], y las trayectorias 

de fase se acercan a él en espiral, esto es, las concentraciones de las conformaciones experimentan 

oscilaciones amortiguadas. 

 Por ejemplo, si todas las constantes se suponen iguales, k1 = k2 = k3 = K, por (3) serán A0 = 

B0 = C0 = m/3, y por (7), 3 , 2 , ,k k k     con lo que T = –3k < 0, Det = – 3k
2
 > 0, D = –3k

2
 

< 0. La solución, por ejemplo para A(t), sería de la forma [23] 

     A = A0 + A
*
(0)·e

–a·t
·cos b·t     (11) 

 Para el mecanismo (6), se puede plantear 

     ´ ´ * a·t

1 1 0

dS
= k ·S·A = k ·S· A + A (0)·e ·cos b·t

dt

    (12) 

y tras integrar se obtiene 

    
´
1k ·

0 2 2

*(0)
S = S(0)·e · · ·( · · · ·a tA

A t a e b sen b t a sen b t
a b

  
    

  (13) 

donde la fluctuación periódica amortiguada de las conformaciones aparece reflejada en S(t). 

OSCILACIONES SOSTENIDAS 

 En este modelo, las tres transformaciones entre conformaciones se consideran autocatalíticas 

[24]: 

     

1

2

3

2

2

2

k

k

k

A B B

B C C

C A A

  


 


 

    (14) 

 Las ecuaciones cinéticas se escriben: 

     

1 3

1 2

2 3

· · · ·

· · · ·

· · · ·

A k A B k C A

B k A B k B C

C k B C k C A








  


 


  


    (15) 
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 Para un estado estacionario 0 0 00, 0, 0,A A B B C C      se cumplirán 

   
1 0 3 0 1 0 2 0 2 0 3 0k ·B = k ·C ; k ·A = k ·C ; k ·B = k ·A    (16) 

 Dado que A  + B  + C  = 0, 
  

será válida también ahora la conservación de materia (4), y (15) 

se reescribirá 

    
 

 

2

3 1 3 3

2

2 1 2 2

A = k · · · · ·

B · · · · ·

m A k k A B k A

k m B k k A B k B






   



   

   (17) 

 Procediendo de nuevo a normalizar (17) respecto al estado estacionario 

0 00, 0, 0,oA A B B C C       mediante las definiciones y notaciones 

  
 

 

3 1 3 0 3 0

0

2 1 2 0 2 0

; ; ´ · , ´ · ; ´ · ´´

´´ · , ´´ · ; ´´ · ´

o

A B
X Y k m k k B k A

A B

k m k k A k B

   

   

      

    

 (18) 

resulta 

     
2

2

X = ·́ ·́ · ·́

Y ´́ · ´́ · · ´́ ·

X X Y X

Y X Y Y

  

  






  



   

   (19) 

 Para el estado estacionario de referencia A = A0, B = B0, son X = X0 = 1, Y = Y0 = 1, 

cumpliéndose 

      
´ = ´ ´

´́ = ´́ ´́

  

  





    (20) 

 El estado de referencia citado no es el único estado estacionario posible para (19). En total 

se tendrían los siguientes estados estacionarios: 

        

0 0

) 0, 0 0

´́
) 0,

´́

´
) , 0

´

) 1, 1

I I I

II II

III III

IV IV

I X X Y Y paraC C m

II X X Y Y

III X X Y Y

IV X X X Y Y Y









      

    


    



     

 (21) 
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 En general, la matriz jacobiana de (20) relativa a un estado estacionario X = Xj, Y = Yj (j = 

I, II, III, IV), se expresa [17,18] 

   
´ ´· 2 ´· ´·

´· ´´ ´´· 2 ´´·

j j j

j j j

Y X X
J

Y X Y

   

   

   
      

  (22) 

 Para el estado I): 

     
´ 0

0 ´́
J





 
  

 
 

con ·́ ´́ 0. Este estado es inestable [3,25] (punto de ensilladura).Det      

 Para el estado II): 

     

·́ ´́
´ 0

´́

´́ · ´́
´́

´́

J

 




 




 
 

 
 
 
 

 

 Como 2

1 1 2 1 3· · 0,k k k k k   será ´· ´´ ´· ´´     y, por tanto, también 

´ ( · ´́ / ´́ ) 0;      luego ´́ ( ´ ( ·́ ´́ / ´́ )) 0;Det         el estado II es punto de ensilladura, 

inestable. 

 Para el estado III): 

     
´́ ·́ ´

0 ´
J

  



  
  
 

 

y ahora ´( ´´ ( ´´· ´/ ´)) 0;Det           el estado III) es punto de ensilladura, inestable. 

 Para el estado IV): 

    
´ ´

´´ ´´
J

 

 

  
  
 

 

 La traza es ´́ ´ 0T      (por (16); cf. (18)). El determinante vale 

´· ´´ ´· ´´ 0,Det        y el discriminante 2 4 4 0;T Det Det       este estado 

estacionario IV), X = X0 = 1, Y = Y0 = 1, es un centro [17], rodeado de un continuum de órbitas 

cerradas, correspondientes a oscilaciones sostenidas con amplitud dependiente de las condiciones 
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iniciales) de las concentraciones de las conformaciones del polímero. La solución, por ejemplo para 

A(t), es de la forma [23] 

     
*

0 (0)A = A  + A ·cos b·t     (23) 

 Puede suponerse que una de las conformaciones actúe como catalizador sobre el sustrato S 

en la conversión, ,S p según 

     ´kS A S p        (24) 

sin que ello afecte a las ecuaciones cinéticas ( A


) en (15) –incluso, en general, cada una de las tres 

conformaciones podría catalizar sobre su propio sustrato [5], sin que el añadir las correspondientes 

etapas de tipo (24) a las transformaciones (14) variase las ecuaciones cinéticas (15)–. Entonces, para 

(24) se puede plantear 

    *

0

dS
= k ·́S·A = k ·́S· A + A (0)·cos b·t

dt
    (25) 

y tras integrar [23] se obtiene 

     
0

*(0)· ·
· ·k´S = S(0)·e

A sen b t
A t

b

 
  

      (26) 

 Expresión que también puede deducirse de (13) para a = 0, y donde aparece la influencia de 

las oscilaciones de las conformaciones sobre S(t). 

OSCILACIONES SOSTENIDAS DE CICLO LÍMITE. 

 En este modelo se supone que las tres interconversiones poseen autocatálisis cúbicas, del 

tipo Brussellator [26–28]: 

     

1

2

3

2 3

2 3

2 3

k

k

k

C A A

A B B

B C C

  


 


 

    (27) 

 Se han ideado diversos métodos para no recurrir directamente a encuentros trimoleculares al 

plantear el formalismo que se deducirá del esquema (27). Por ejemplo, un monomio proporcional a 

A
2
·C (primera etapa de (27)) se puede obtener con intermedio de la forma dímera D: 
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2

3

A D

D C A D

  


  

     (28) 

Con la hipótesis de que siempre 0.D


  Las ecuaciones cinéticas para (27) se escriben: 

     

2 2

1 2

2 2

2 3

2 2

1 3

· · · ·

· · · ·

· · · ·

A k A C k A B

B k A B k B C

C k A C k B C








 


 


   


    (29) 

 Para un estado estacionario 0 0 00, 0, 0,A A B B C C      se cumplirán 

   
0 0

2 2 2

1 0 2 0 2 0 0 3 3 0 0 1k ·A · = k ·B ; k ·A · = k ·C ; k ·B ·C = k ·AoC B   (30) 

 Dado que A  + B  + C, 
  

será de nuevo válida la conservación de materia (4). Nótese que, 

para ser C   0, deberá cumplirse A B m  , esto es, el flujo físicamente realista [25] debe ocurrir 

en el triángulo del plano de fases {A,B} limitado por 

     0, 0,A B A B m        (31) 

triángulo que actúa como región natural de confinamiento de las trayectorias de fase. 

 Aplicando, pues, (4), el sistema (29) se reescribirá 

     
 

 

2 2

1 2

22

2 3

· · · ·

· · · ·

A k A m A B k A B

B k A B k B m A B






   


    

   (32) 

 A los fines de la demostración que sigue, se supondrá k1 = k2 = k3 = K, con lo cual A0 = B0 = 

C0 = m/3. En este caso la matriz jacobiana de (32) resulta: 

    

2

2 2

·
0

3

· ·

3 3

K m

J
K m K m

 
 

 
 
 
 

    (33) 

cuyo determinante vale Det = (K
2
·m

4
/9) > 0, cuya traza es T = (K·m

2
/3) > 0, y cuyo discriminante 

vale 2 3 44 ( · /9) 0,T Det K m      de modo que el estado estacionario A = A0, B = B0, es un 

foco inestable. Esta inestabilidad, unida al hecho de la mencionada región de confinamiento, 
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justifica (teorema de Poincaré–Bendixson) [29] la existencia de al menos un ciclo límite del sistema 

(32). Se producirán oscilaciones sostenidas de las concentraciones de las conformaciones del 

polímero, y la amplitud de las mismas es independiente de las condiciones iniciales del sistema 

[30]. 
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