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RESUMEN
Se han planteado algunos modelos cinéticos basados en un ciclo de transiciones entre tres
conformaciones estereoquimicas poliméricas, segln el en esquema:
A——=C
Np v
En principio, el simple ciclo citado, sin atribuir propiedad catalitica interna a alguna a las tres
especies, puede tener, para valores aproximadamente iguales de las constantes cinéticas, un estado
estacionario foco estable, al que el sistema tienda mediante oscilaciones amortiguadas. Estas pueden
aparecer en la cinética de una sustancia externa al ciclo, sobre la que una de las formas ejerza catélisis.
Cuando las tres transformaciones poseen autocatalisis simple (por ejemplo, A+ B— 2B),

existen varios estados estacionarios: algunos inestables (puntos de ensilladura), y otro, centro, con
oscilaciones sostenidas, que también se reflejardn en la accion catalitica de una conformacion sobre un
sustrato externo.

Por altimo se analiza el caso de que las tres interconversiones posean autocatélisis cubicas (por
gjemplo, A+ 2B— 3B), caso en que existe (si las constantes son aproximadamente iguales) un
estado estacionario foco inestable, con oscilaciones sostenidas de ciclo limite.

En todos los analisis, juega un importante papel la conservacion de masa: A + B + C = m = constante.

Palabras claves: transiciones conformacionales, estado estacionario foco inestable, ciclo
limite, oscilaciones amortiguadas, autocatalisis, accidn autocatalitica.

ABSTRACT
Some kinetic models have been proposed based on a cycle of transitions between three polymeric
stereochemical conformations, according to the scheme

A==C
Ng

In principle, the simple cycle cited, without attributing internal catalytic property to any of the
three species, can have, for values approximately equal of the kinetic constants, a steady-state of stable
focus at which the system tends to damped oscillations. These can appear in the kinetics of a substance
external to the cycle, on which an of them forms exercise catalysis.

When the three transformations have simple autocatalysis (A + B— 2B, for example),
there are several stationary states: some unstable (saddle points), and another, Center, with damped
oscillations, which are also reflected in the catalytic action of a conformation on an external substrate.

Finally, we analyze the case that the three interconversions have cubic autocatalysis (for
example, A + B— 2B), in which case, if the constants are approximately equal, exists a steady state
unstable focus, with sustained oscillations of the limit cycle.

In all the analyses, plays an important role the conservation of mass: A + B + C = m = constant.
Key words: conformational transitions, State stationary unstable focus, cycle limit, damped
oscillations, autocatalysis, autocatalytic action
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INTRODUCCION

Es conocido el hecho de que las conformaciones estereoquimicas de algunos polimeros les
confieren interesantes propiedades [1-4]. Podria citarse el clasico ejemplo de las enzimas, con la no
menos clasica metéfora de la llave y la cerradura [5]. Recientemente, Yoshida y col. han estudiado
[6-10] geles sensibles a estimulos como cambios de pH, temperatura, disolvente, etc..., y han
obtenido sorprendentes resultados de ordenamiento temporal (oscilaciones) y espacial (ondas
quimicas) al incluir en el polimero, responsable del gel, iones metélicos implicados en la célebre

reaccion de Belousov—Zhabotinsky [11,12].

En este trabajo se presentan algunos modelos sencillos referentes a la propia transicion
conformacional, mostrando como la periodicidad temporal puede surgir como inherente a la misma.
En principio el planteamiento implica tres conformaciones, pero una condicion de conservacion de
materia [13] reduce el tratamiento a dos variables, permitiendo asi aplicar técnicas de plano de fases

[14,16], concretamente el analisis del caracter de los estados estacionarios [17—20].

OSCILACION AMORTIGUADA

Se consideran tres conformaciones, A, B y C, de un mismo polimero, que se transforman

segun:
A —45 B
B X5 C (1)
cC %5 A

Las ecuaciones cinéticas se escriben

A=—k-A+kC
B=k-A—k,B @)
C=kB—kC

En un estado estacionario, A = Ay, B=By, C=Cy, seran A=0, B =0, C = 0, es decir,

k;*A, = KBy = KkyCy (3)

Dado que A + B + C =0, se cumple la conservacion total de materia:

A + B + C =m = constante 4
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lo que permite reescribir (2) como

—(K; + Ky )-A — kB + kym

8 ©)
B

= k,-A - k,B

A un resultado analogo se llega planteando una catalisis enzimatica [22] sobre el sustrato S,

en la conversion S — p:

S+AL>B
B—-> C (6)

C &5 A+p

donde A, B, y C se interpretan como enzima libre (A) y dos conformaciones (B, C) del complejo
enzima-sustrato. Si el sustrato estd en exceso, de modo que se pueda aproximar kS =k,el

esquema (6) es isomorfo al (1).

Si para el citado estado estacionario son A, = 0, B, = 0, se pueden definir las variables y

notaciones siguientes:

x =2y =B KM kg, = (7)
A B, A
y reescribir (5) en la forma

Y = k(X - Y)

Evidentemente, al estado estacionario de referencia A= A,, B = B,, corresponden ahora X =

Xo=1,Y =Yy =1, cumpliéndose
H=a+p 9)

La matriz jacobiana para (8) es

J =(_“ _ﬂ) (10)
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El determinante vale Det =k, (« + B) = k,-u > 0 siempre. Latrazaes T = — (ko + o) = —

(k; + ko + ks) < O siempre, y es posible encontrar condiciones en que el discriminante A = T? —
4-Det sea negativo, en cuyo caso el citado estado estacionario es foco estable [17], y las trayectorias

de fase se acercan a él en espiral, esto es, las concentraciones de las conformaciones experimentan

oscilaciones amortiguadas.

Por ejemplo, si todas las constantes se suponen iguales, k; = k; = k3 = K, por (3) seran Aq =
Bo = Co=m/3, ypor (7), u=3k, a =2k, =k, conloqueT=-3k<0, Det=-3k*>0, D=-3K

< 0. La solucion, por ejemplo para A(t), seria de la forma [23]
A=A+ A" (0)-e?*"cos bt (11)

Para el mecanismo (6), se puede plantear

% = —k;-S:A = —k;-S:(A, + A’(0)-e *"-cos b-t) (12)
y tras integrar se obtiene
_ % A*(0) —at
S=3(0)e -[A)-t t (a+e*"(bsen bt — a:sen b-t)} (13)

donde la fluctuacion periddica amortiguada de las conformaciones aparece reflejada en S(t).

OSCILACIONES SOSTENIDAS

En este modelo, las tres transformaciones entre conformaciones se consideran autocataliticas

[24]:

A+B —«5 2B
B+C —» 2C (14)
C+A —f 5 2A

Las ecuaciones cinéticas se escriben:

A=—k-AB +k,CA
B = k-AB — k,-BC (15)

C =k,-BC — k,C-A
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Para un estado estacionario A= A =0, B=B,#0,C =C, =0, se cumpliran

k,'-B, = k;-Cy; ki-A, = Kk,Cy; Kk, By = K;-A, (16)

Dado que A + B + C =0, sera valida también ahora la conservacion de materia (4), y (15)

se reescribira
A =k, mA - (kl + k3)-A-B - kS-A2 (17)
B =k, mB + (k +k,)AB + k,-B?

Procediendo de nuevo a normalizar (17) respecto al estado estacionario

A=A #0,B=B, #0, C =C, # 0, mediante las definiciones y notaciones

A B
X=—;Y=—;u=km, o =(k +k,)B,; B =k, A=
A B, 3 (1 3) 0 ' (18)
/U”:kz'mva”:(kl"'kz)'pb;ﬁ”:kz'Bo =f
resulta
X = 4 X —a XY — fX? (19)

Y =Y + & XY 4 fY?

Para el estado estacionario de referencia A = Ag, B =Bg, son X = Xo=1,Y =Yy =1,

cumpliéndose

e
{ﬂ” o« ,b’, 20)
u=a+p

El estado de referencia citado no es el Unico estado estacionario posible para (19). En total

se tendrian los siguientes estados estacionarios:

) X=X,=0,Y=Y,=0 paraC=C, =m=0
) X=X,=0Y=Y, =4

R 1)
) X =X, =-“,Y=Y, =0

Vg
IV) X =X, =X,=1Y=Y,=Y,=1
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En general, la matriz jacobiana de (20) relativa a un estado estacionario X = X;, Y = Y| (j =

I, I, 111, V), se expresa [17,18]

u—ayY, =28 -X. —-a X,
J :( ) J J 3 3 J ) (22)
avy, —{ X+ 27,
Para el estado I):
= ‘Ll' O
0 0
con Det = — 4" -1/” < 0. Este estado es inestable [3,25] (punto de ensilladura).
Para el estado I1):
_ aﬁ'ff 0
J=| . .
a u .
p H
)i g
Como ki + kK, + kK, >0, seraf-f <o -a” Y, por tanto, también

1 — (a1 7)< 0; luego Det = 1" (i —(a'-1"1 7)) < 0; el estado 1l es punto de ensilladura,

inestable.

Para el estado I11):

(e
0 g

yahora Det = — i/ (—p~ + (" -1157)) < 0; el estado 111) es punto de ensilladura, inestable.

Para el estado 1V):

SV
a B

La traza es T=p"-p=0 (por (16); cf. (18)). EI determinante vale
Det=c-a” — - >0, y el discriminante A=T? —4Det =—4Det <0; este estado

estacionario IV), X = Xo =1, Y = Yo =1, es un centro [17], rodeado de un continuum de Orbitas

cerradas, correspondientes a oscilaciones sostenidas con amplitud dependiente de las condiciones
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iniciales) de las concentraciones de las conformaciones del polimero. La solucién, por ejemplo para
A(t), es de la forma [23]

A=A, +Ag-coshbt (23)

Puede suponerse que una de las conformaciones actie como catalizador sobre el sustrato S

en la conversion, S — p,segln

S+A—X5S+p (24)

sin que ello afecte a las ecuaciones cinéticas (A) en (15) —incluso, en general, cada una de las tres
conformaciones podria catalizar sobre su propio sustrato [5], sin que el afadir las correspondientes
etapas de tipo (24) a las transformaciones (14) variase las ecuaciones cinéticas (15)—. Entonces, para

(24) se puede plantear

Ccil_t — _K-SA = —k'-S-(AO + A”(0)-cos b-t) (25)

y tras integrar [23] se obtiene

A*(0)-sen b-t}

S= S(O)-e"('[%“ b (26)

Expresion que también puede deducirse de (13) para a = 0, y donde aparece la influencia de

las oscilaciones de las conformaciones sobre S(t).

OSCILACIONES SOSTENIDAS DE CICLO LIMITE.

En este modelo se supone que las tres interconversiones poseen autocatalisis cubicas, del
tipo Brussellator [26-28]:

C+2A —45 3A
A+2B —=» 3B (27)
B+2C —» 3C

Se han ideado diversos métodos para no recurrir directamente a encuentros trimoleculares al
plantear el formalismo que se deducira del esquema (27). Por ejemplo, un monomio proporcional a

AZ.C (primera etapa de (27)) se puede obtener con intermedio de la forma dimera D:
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{ZA —— D

(28)
D+C—>3A+D
Con la hipétesis de que siempre D= 0. Las ecuaciones cinéticas para (27) se escriben:
A=k -A:C — k,-AB?
B = k,-AB? — k,-BC? (29)
C = —k-A%C + k,.BC?
Para un estado estacionario A= A #0, B=B,#0,C =C, =0, se cumpliran
ki-AyC, = Ky Bg; K,rAgBy = ky-C? 5 ky-By-Cy = kA’ (30)

Dado que A + B + C, serd de nuevo vélida la conservacion de materia (4). Nétese que,

para ser C > 0, debera cumplirse A + B < m, esto es, el flujo fisicamente realista [25] debe ocurrir

en el triangulo del plano de fases {A,B} limitado por
A>0,B>0,A+B<m (31)

triangulo que actia como region natural de confinamiento de las trayectorias de fase.
Aplicando, pues, (4), el sistema (29) se reescribira
A=k-A{m— A B) - k,AB?

i (32)
B = k,AB* — k;B{m - A—B)’

A los fines de la demostracion que sigue, se supondréa k; = k; = ks = K, con lo cual Ao =By =
Co = m/3. En este caso la matriz jacobiana de (32) resulta:

0 - K':;”z
= K-m? K-m? (33)
3 3

cuyo determinante vale Det = (K2m?9) > 0, cuya traza es T = (K-m%3) > 0, y cuyo discriminante
vale A =T? —4Det = —(K*m*/9) < 0, de modo que el estado estacionario A = Ao, B = B, s un

foco inestable. Esta inestabilidad, unida al hecho de la mencionada regién de confinamiento,
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justifica (teorema de Poincaré—Bendixson) [29] la existencia de al menos un ciclo limite del sistema

(32). Se produciran oscilaciones sostenidas de las concentraciones de las conformaciones del
polimero, y la amplitud de las mismas es independiente de las condiciones iniciales del sistema
[30].
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